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Introduction

We aim to develop a framework where we can estimate level sets of images,
from projective measurements without reconstructing the original image.

We propose a novel algorithm that utilizes dyadic decision trees to examine
the compressive measurements, and generate an estimate of the level set.

Theoretical bounds for our algorithm have been proved by my postdoctoral
colleague Azhar.

Finally, we move on to numerical simulations where we demonstrate the
efficacy of our algorithm over existing techniques.
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Compressed Sensing

Sensing = measuring something (a signal or an image)

Compressed = Not measuring it completely, only partially

The importance of CS lies in the fact that provided an image satisfies a set
of statistical properties, it can be recovered with negligible error using only
the partial measurements. This has far-reaching implications!

Faster acquisition times in microscopic imaging
Lower radiation dosages required in CT Scans
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An example of CS
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Mathematics behind CS

There are two important statistical criteria for CS to be effective. They are
sparsity and incoherence.

Sparsity enforces that the image must have a sparse representation, when
expressed in a certain basis (eg. Fourier, Wavelet, etc.) i.e. f = Ψθ, where
f is the image, Ψ is the representation basis, and θ is a sparse vector of
coefficients.

The image is measured by means of a sensing matrix Φ which is a linear
operator of dimension m × n, n being the number of pixels in the original
image, and m being the number of measurements we wish to obtain. Note
that m << n. This is mathematically given as y = Φf = ΦΨθ
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Mathematics behind CS

CS theory states that Φ and Ψ should be incoherent with each other. The
coherence between Φ and Ψ is defined as:

µ(Ψ,Φ) =
√
n ×maxi,j |

〈
Φi

∣∣Ψj

〉
|

Incoherence indicates how ”dissimilar” the sensing and representation bases
are.

The importance of this is that if they were very similar, and the signal was
sparse in the representation basis, then most measurements would turn out
to be 0.

This quantity µ should be as small as possible to result in better
reconstruction. Its value always lies in the range (1,

√
n).
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Level Set Estimation

Level set estimation is a mathematical approach used to identify and
characterize regions within a function’s domain where the function values
meet or exceed a specified threshold, referred to as the “level.”

Effective for detecting boundaries in complex, multi-dimensional datasets.

Mathematically, the level set of a function f : [0, 1]d → R is a region S∗ in
its domain over which the function exceeds a certain critical value ν; that is,
S∗ =

{
x ∈ [0, 1]d : f (x) > ν

}
.

Figure: Geospatial image and it’s level set
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Shearlets

Shearlets are a representation system used to analyze multidimensional data,
especially effective for capturing features like edges and singularities.

Unlike wavelets, they include directional sensitivity through shear
transformations, allowing better handling of anisotropic structures.

Shearlets are widely applied in areas like image processing and medical
imaging because they efficiently represent complex data with fewer
coefficients.

This makes them a practical tool for tasks involving high-dimensional data.

Figure: An example of how the classical shearlet generates frequency tiling.
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Dyadic Decision Trees

Dyadic decision trees are a hierarchical method for data partitioning,
particularly effective for image analysis.

They use “dyadic splits” to iteratively divide data, creating a tree structure
that represents progressively finer subdivisions of the image space.

Each node in the tree corresponds to a localized image patch, with binary
decisions made to either split or retain the patch based on criteria like pixel
intensity or texture.

This allows for adaptive focus on regions of interest, stopping at
homogeneous areas while further subdividing complex ones.

This approach is well-suited for tasks like object detection or segmentation,
offering efficient, structured analysis by reducing computational overhead.
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Dyadic Decision Trees

Figure: The image grid is depicted via dashed (red) lines wherein the equisized
cells represent pixel-locations, whereas the partition induced by the shown DDT is
represented by solid (black) lines with each block representing a patch (an
assemblage of pixel-locations) in [0, 1]2. The middle figure corresponds to a
sample level set upon binarizing the patches.
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Our Algorithm

We leverage the DDT paradigm in the context of level estimation by first
obtaining compressive measurements y = Af + η, where A = ΦΨ as
explained earlier, and η is the noise induced during sensing.

The projective measurements z are obtained as z = AT y = ATAf + ATn.

This can be thereby interpreted as a denoising problem where z = f + n′,
where n′ = (ATA− I)f + ATn.

The goal of the algorithm is to design an estimator of the following form:

Ŝ = argminS∈SM
R̂N(S) + λpen(S)

where SM is a class of candidate estimates, R̂N(S) is an empirical measure
of the estimator risk based on N noisy observations of the signal f, and
pen(·) is a regularization term which penalizes improbable level sets. λ is the
regularization coefficient.
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Our Algorithm (contd.)

The algorithm proceeds by utilizing the dyadic decision tree paradigm upon
the projective measurements z , starting with the entire image and then
making a greedy choice between the following three options:

Not slicing the image
Slicing horizontally
Slicing vertically

For each of the three choices, the inclusion of the generated patches is first
determined through a patch inclusion criteria - the average intensity value
within a patch is greater than the threshold.

After this, the empirical error is computed using the formula for symmetric
risk as shown below.

R̂z,N(S) :=
1

N

N∑
i=1

(
zi − ν

)
ISc(i),
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Our Algorithm (contd.)

The choice between the three options is made by choosing the one which
has the lowest value of the cost function.

ŜN =S∈SM (c1) R̂z,N(S) + ε ∥SψIS(a, s, t)∥1 ,

The second term here is the L1 norm of the shearlet coefficients of the
estimate.
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Results

We demonstrate numerical simulations on different images, considering
variations across the amount of measurements and the noise induced during
sensing.

Note that, in order to obtain a sufficiently smooth output, we apply 2D
translation transformations, as well as four 90 degree rotations, to the proxy
measurement image z , prior to level set computation.

The level sets thus computed on every translated/rotated version of z are
averaged to produce the final level set estimate.

To demonstrate the effectiveness of our algorithm, we contrast our results
with an existing algorithm by Willett et. al. 1 which utilizes a different
penalty compared to ours.

1Level set estimation from projection measurements: Performance guarantees and
fast computation Kalyani Krishnamurthy, Waheed U. Bajwa, Rebecca Willett
(arXiv:1209.3990)
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Geospatial Data

Figure: Geospatial image and it’s level set
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Geospatial Data

Figure: z , Level set of z, Our Reconstruction, Willett’s Reconstruction
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Astrophysical Data

Figure: Galaxy Image and it’s level set
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Astrophysical Data

Figure: z , Level set of z, Our Reconstruction, Willett’s Reconstruction

Figure: Variation of error with measurements
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Medical Data

Figure: Brain image and its level set
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Medical Data

Figure: z , Level set of z, Our Reconstruction, Willett’s Reconstruction

Figure: Variation of error with measurements for medical imageA. Nag & A. Rajwade PH 587 November 28, 2024 22 / 24



Future Work & Conclusion

Our simulations successfully show the effectiveness of using the
shearlet transform as a representation basis for reconstruction from
compressive measurements.

We are preparing a publication on this to be submitted to the
Institute of Physics: Inverse Problems Journal.

Moving forward, we plan to work on how we can develop algorithms
for compressive reconstruction of NMR spectra by leveraging deep
learning.
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Thank you!
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