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Level Set of Noiseless Image
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Introduction

@ We aim to develop a framework where we can estimate level sets of images,
from projective measurements without reconstructing the original image.

@ We propose a novel algorithm that utilizes dyadic decision trees to examine
the compressive measurements, and generate an estimate of the level set.

@ Theoretical bounds for our algorithm have been proved by my postdoctoral
colleague Azhar.

@ Finally, we move on to numerical simulations where we demonstrate the
efficacy of our algorithm over existing techniques.
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Compressed Sensing

@ Sensing = measuring something (a signal or an image)
@ Compressed = Not measuring it completely, only partially

@ The importance of CS lies in the fact that provided an image satisfies a set
of statistical properties, it can be recovered with negligible error using only
the partial measurements. This has far-reaching implications!

o Faster acquisition times in microscopic imaging
o Lower radiation dosages required in CT Scans
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An example of CS

Ref: Candes, Romberg and
Tao, “Robust Uncertainty
Principles: Exact Signal
Reconstruction from Highly
Incomplete Frequency
Information”, IEEE

Transactions on
Information Theory, Feb

such that

V(uv)eC [F()u,v)=Glu.v)
F — Fourier operator
f.=x—derivativeof f:

[, = y—derivativeol f

{Gu,v)} = retained frequencies
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Mathematics behind CS

@ There are two important statistical criteria for CS to be effective. They are
sparsity and incoherence.

@ Sparsity enforces that the image must have a sparse representation, when
expressed in a certain basis (eg. Fourier, Wavelet, etc.) i.e. f = W0, where
f is the image, W is the representation basis, and 8 is a sparse vector of
coefficients.

@ The image is measured by means of a sensing matrix ® which is a linear
operator of dimension m x n, n being the number of pixels in the original
image, and m being the number of measurements we wish to obtain. Note
that m << n. This is mathematically given as y = &f = dW§
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Mathematics behind CS

@ CS theory states that ® and V should be incoherent with each other. The
coherence between ® and V is defined as:

p(V, ) = /n x max; | <¢i|lllj> |

@ Incoherence indicates how "dissimilar’ the sensing and representation bases
are.

@ The importance of this is that if they were very similar, and the signal was
sparse in the representation basis, then most measurements would turn out
to be 0.

@ This quantity u should be as small as possible to result in better
reconstruction. Its value always lies in the range (1,+/n).
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Level Set Estimation

@ Level set estimation is a mathematical approach used to identify and
characterize regions within a function's domain where the function values
meet or exceed a specified threshold, referred to as the “level.”

@ Effective for detecting boundaries in complex, multi-dimensional datasets.

@ Mathematically, the level set of a function f : [0,1]¢ — R is a region S* in
its domain over which the function exceeds a certain critical value v; that is,
S*={xe[0,1]: f(x)>v}.

Figure: Geospatial image and it's level set
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Shearlets

@ Shearlets are a representation system used to analyze multidimensional data,
especially effective for capturing features like edges and singularities.

@ Unlike wavelets, they include directional sensitivity through shear
transformations, allowing better handling of anisotropic structures.

@ Shearlets are widely applied in areas like image processing and medical
imaging because they efficiently represent complex data with fewer
coefficients.

@ This makes them a practical tool for tasks involving high-dimensional data.

il

Figure: An example of how the classical shearlet generates frequency tiling.
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Dyadic Decision Trees

Dyadic decision trees are a hierarchical method for data partitioning,
particularly effective for image analysis.

They use "dyadic splits” to iteratively divide data, creating a tree structure
that represents progressively finer subdivisions of the image space.

@ Each node in the tree corresponds to a localized image patch, with binary
decisions made to either split or retain the patch based on criteria like pixel
intensity or texture.

@ This allows for adaptive focus on regions of interest, stopping at
homogeneous areas while further subdividing complex ones.

This approach is well-suited for tasks like object detection or segmentation,
offering efficient, structured analysis by reducing computational overhead.
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Dyadic Decision Trees

( 1 0

Figure: The image grid is depicted via dashed (red) lines wherein the equisized
cells represent pixel-locations, whereas the partition induced by the shown DDT is
represented by solid (black) lines with each block representing a patch (an
assemblage of pixel-locations) in [0,1]2. The middle figure corresponds to a
sample level set upon binarizing the patches.
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Our Algorithm

@ We leverage the DDT paradigm in the context of level estimation by first
obtaining compressive measurements y = Af + 7, where A = OV as
explained earlier, and 7 is the noise induced during sensing.

@ The projective measurements z are obtained as z = ATy = ATAf + A" n.

@ This can be thereby interpreted as a denoising problem where z = f + n’,
where ' = (ATA—-I)f + AT n.

@ The goal of the algorithm is to design an estimator of the following form:

PN

$ = argminses, Rn(S) + Apen(S)

where Sy is a class of candidate estimates, RAN(S) is an empirical measure
of the estimator risk based on N noisy observations of the signal f, and
pen(-) is a regularization term which penalizes improbable level sets. A is the
regularization coefficient.
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Our Algorithm (contd.)

@ The algorithm proceeds by utilizing the dyadic decision tree paradigm upon
the projective measurements z, starting with the entire image and then
making a greedy choice between the following three options:

e Not slicing the image
e Slicing horizontally
e Slicing vertically

@ For each of the three choices, the inclusion of the generated patches is first
determined through a patch inclusion criteria - the average intensity value
within a patch is greater than the threshold.

@ After this, the empirical error is computed using the formula for symmetric
risk as shown below.

R : Z —Vlsc (1),
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Our Algorithm (contd.)

@ The choice between the three options is made by choosing the one which
has the lowest value of the cost function.
Sn =SeSu(a) RZ,N(S) +e ||S¢'|5(a, s, t)”l )

@ The second term here is the L1 norm of the shearlet coefficients of the
estimate.
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@ We demonstrate numerical simulations on different images, considering
variations across the amount of measurements and the noise induced during
sensing.

@ Note that, in order to obtain a sufficiently smooth output, we apply 2D
translation transformations, as well as four 90 degree rotations, to the proxy
measurement image z, prior to level set computation.

@ The level sets thus computed on every translated/rotated version of z are
averaged to produce the final level set estimate.

@ To demonstrate the effectiveness of our algorithm, we contrast our results
with an existing algorithm by Willett et. al. ! which utilizes a different
penalty compared to ours.

!Level set estimation from projection measurements: Performance guarantees and
fast computation Kalyani Krishnamurthy, Waheed U. Bajwa, Rebecca Willett
(arXiv:1209.3990)
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https://arxiv.org/abs/1209.3990

Geospatial Data

Figure: Geospatial image and it's level set
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Geospatial Data

Figure: z, Level set of z, Our Reconstruction, Willett's Reconstruction
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Astrophysical Data

Figure: Galaxy Image and it's level set
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Astrophysical Data

Figure: z, Level set of z, Our Reconstruction, Willett's Reconstruction
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Figure: Variation of error with measurements
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Medical Data

Figure: Brain image and its level set
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Medical Data

Figure: z, Level set of z, Our Reconstruction, Willett's Reconstruction
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Future Work & Conclusion

@ Our simulations successfully show the effectiveness of using the
shearlet transform as a representation basis for reconstruction from
compressive measurements.

@ We are preparing a publication on this to be submitted to the
Institute of Physics: Inverse Problems Journal.

@ Moving forward, we plan to work on how we can develop algorithms
for compressive reconstruction of NMR spectra by leveraging deep
learning.
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Thank you!
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