CS 228 (M) - Logic in CS Tutorial III - Solutions

Ashwin Abraham

IIT Bombay

24th August, 2023

1/12

Ashwin Abraham

Ashwin Abraham

- E > - E >

This statement is **False**. An easy counterexample to this would be $\mathcal{F} = \{p, \neg p\}$ and $\mathcal{G} = \{q, \neg q\}$.

・ロト ・四ト ・ モト ・ モト

Theorem

A set of formulae Σ is satisfiable iff every finite subset of it is satisfiable.

This theorem is known as the **Compactness Theorem**.

Proof.

Proving the backward direction is trivial, as clearly if Σ is satisfiable then every finite subset of Σ is satisfiable (indeed, every subset is satisfiable). Let us show that if Σ is not satisfiable, then there exists a finite subset of it that is unsatisfiable (this suffices to show the forward direction). By the Completeness^a of our Formal Proof System, if Σ is unsatisfiable, then it is inconsistent, ie $\Sigma \vdash \bot$. The proof of this statement can use only a finite number of formulae in Σ (since all proofs are finite). Call this finite subset Σ' . Our proof of $\Sigma \vdash \bot$ will also show that $\Sigma' \vdash \bot$, and so this Σ' is a finite subset of Σ that is unsatisfiable.

^aFor this proof to be airtight, our proof of completeness should not depend on the Compactness Theorem, even in the infinite case. Such proofs do exist. Since \mathcal{F} is inconsistent (and therefore also unsatisfiable), by the Compactness Theorem there exists a finite subset of \mathcal{F} (say \mathcal{F}') that is unsatisfiable (and therefore inconsistent). Since \mathcal{F} is closed under conjunction $\left(\bigwedge_{f \in \mathcal{F}'} f\right) \in \mathcal{F}$. Call this F. Clearly $\{F\} \equiv \mathcal{F}'$, and therefore $\{F\} \vdash \bot$. By \bot elimination, for any formula G, we have $\{F\} \vdash \neg G$. Therefore, we have shown that there exists $F \in \mathcal{F}$ such that for any $G \in \mathcal{F}$, $\{F\} \vdash \neg G$. This is in fact a stronger statement than what we set out to prove!

イロト イ理ト イヨト イヨト 二日

We have to show that if F is not a contradiction and G is not a tautology, and \models ($F \implies G$), then there exists a formula H such that \models ($F \implies H$), \models ($H \implies G$) and Vars(H) \subseteq Vars(F) \cap Vars(G). Firstly, note that we do not need the statement that F is not a contradiction and G is not a tautology. If F is a contradiction, then we can take $H = \bot$ and if G is a tautology we can take $H = \top$. Removing this clause from the question statement, we shall prove the rest via induction on |Vars(F) - Vars(G)|. Our inductive hypothesis will be if |Vars(F) - Vars(G)| = k and $\models (F \implies G)$, then there exists H such that \models ($F \implies H$), \models ($H \implies G$) and Vars(H) \subseteq Vars(F) \cap Vars(G). Base Case:

When k = 0, we have $Vars(F) \subseteq Vars(G)$, and therefore we can choose H = F, which satisfies all the conditions.

イロト イヨト イヨト イヨト

Before we proceed to the inductive step,

Lemma:

Say
$$q \in Vars(F) - Vars(G)$$
 and $\models (F \implies G)$.
Let $H = F[q/\bot] \lor F[q/\top]$. Then we have $\models (F \implies H)$ and $\models (H \implies G)$.

Note that for any formula F, F[p/G] denotes the formula obtained by replacing all instances of p in F by G.

Proof:

Say an assignment α has $\alpha \vDash F$. If $\alpha(q) = 0$, then we have $\alpha \vDash F[q/\bot]$ and therefore $\alpha \vDash H$. On the other hand, if $\alpha(q) = 1$, then $\alpha \vDash F[q/\top]$ and we still have $\alpha \vDash H$. Therefore, we have $\alpha \vDash F \implies \alpha \vDash H$ for all α , ie $F \implies H$ is valid, ie $\vDash (F \implies H)$.

Now, let us show the other part. Some notation first: For an assignment α , $\alpha[q \rightarrow b]$ is an assignment identical to α except at q, where it is b. We have $\alpha[q \rightarrow 0] \vDash F \iff \alpha \vDash F[q/\bot]$, $\alpha[q \rightarrow 1] \vDash F \iff \alpha \vDash F[q/\top]$.

< ロ > < 同 > < 回 > < 回 >

Assume $\alpha \vDash H$. We have:

1
$$\alpha \models F[q/\bot] \lor F[q/\top]$$

2 $\alpha[q \rightarrow 0] \models F \lor \alpha[q \rightarrow 1] \models F$
3 $\alpha[q \rightarrow 0] \models G \lor \alpha[q \rightarrow 1] \models G$ (Since $\forall \alpha, \alpha \models F \implies \alpha \models G$)
Now, since $q \notin Vars(G)$, $\alpha[q \rightarrow b] \models G \iff \alpha \models G$, $b \in \{0, 1\}$.
Therefore,

$$a \vDash \mathbf{G} \lor \alpha \vDash \mathbf{G}$$

$$\circ$$
 $\alpha \models G$

Therefore, $\forall \alpha, \alpha \vDash H \implies \alpha \vDash G$, ie $\vDash (H \implies G)$

イロト イヨト イヨト イヨト

Now, back to the main proof. **Inductive Step**:

Our inductive hypothesis is that for any formulae F and G if |Vars(F) - Vars(G)| = k and $\models (F \implies G)$, then there exists H such that \models ($F \implies H$), \models ($H \implies G$), and Vars(H) \subset Vars(F) \cap Vars(G). Assuming this, we have to prove the hypothesis for the case where |Vars(F) - Vars(G)| = k + 1. Let $q \in Vars(F) - Vars(G)$, and let $H = F[q/\top] \vee F[q/\perp]$. By the previous lemma, we have $\vDash (F \implies H)$ and \models ($H \implies G$). Note that |Vars(H) - Vars(G)| = k. Applying the inductive hypothesis, there exists H' such that $\models (H \implies H')$, \models ($H' \implies G$) and $Vars(H') \subseteq Vars(H) \cap Vars(G)$. Using \models ($F \implies H$) and the fact that $Vars(H) \subset Vars(F)$, we get $\models (F \implies H')$, \models ($H' \implies G$), and $Vars(H') \subseteq Vars(F) \cap Vars(G)$. Therefore, the inductive hypothesis is proven for k+1, and thus the statement in the question is also proven.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Firstly, note that the empty set \emptyset is satisfiable (in fact, it is valid)¹. Now, it can be easily shown that the set

$$\Sigma_n = \{p_1, \dots, p_n, \bigvee_{i=1}^n \neg p_i\}$$

is an example of a minimal unsatisfiable set for $n \ge 1$.

(a) Mechanically keep calculating $Res^n(\psi)$ by resolution, until you find that $\emptyset \in Res^*(\psi) = Res^3(\psi)$. This correctly tells us that ψ is unsatisfiable due to the soundness of the resolution proof system. (b) Let us do resolution in a slightly different way.

Our algorithm is as follows:

- If Vars(ψ) is empty, then we can immediately conclude the satisfiability of ψ by checking if Ø ∈ ψ.
- If not, pick a variable p ∈ Vars(ψ) such that resolution² can be done with pairs of clauses in ψ with p as pivot.
- If no such variable exists, then we are done with resolution, and we can check satisfiability by checking if $\emptyset \in \psi$.
- If such a variable exists, replace ψ with $R_p(\psi)$, where $R_p(\psi)$ is formed by removing all clauses that were involved in resolution from ψ and replacing them with the newly generated resolved clauses.
- 6 Go to step 1

²We do not consider resolutions that lead to tautologies $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rightarrow \langle \Xi \rangle \rightarrow \Xi \rightarrow \langle \Box \rangle$

To show that this algorithm works, we show that ψ and $R_{\rho}(\psi)$ are equisatisfiable, ie $\psi \vdash \bot \iff R_{\rho}(\psi) \vdash \bot$.

The reverse direction is easy to prove here, the clauses of $R(\psi)$ are either members of ψ or are formed from ψ by resolution, ie any proof that $R_p(\psi) \vdash \bot$ can easily be converted into a proof that $\psi \vdash \bot$ by replacing the steps assuming the resolved clauses with their resolutions. For the forward direction, let us prove the contrapositive, ie $R_p(\psi)$ is satisfiable $\implies \psi$ is satisfiable. Let $\psi = \{\{p\} \cup A_i : i \in \{1 \dots m\}\} \cup \{\{\neg p\} \cup B_j : j \in \{1 \dots n\}\} \cup C$

where A_i, B_j and C do not contain p. We have $R_p(\psi) = \{A_i \cup B_j : (i, j) \in [m] \times [n], A_i \cup B_j \text{ not a tautology}\} \cup C$ Let's say some assignment α has $\alpha \models R_p(\psi)$. Firstly, clearly $\alpha \models C$. If $\alpha \models A_i$ for all $i \in [m]$, then $\alpha[p \to 0] \models \psi$. If there is some $k \in [m]$ such that $\alpha \nvDash A_k$, then for all $j \in [n]$, we have $\alpha \models A_k \cup B_j$ (this follows from the membership of the clause in $R_p(\psi)$ for non-tautological clauses and by definition for the tautologies). Since $\alpha \nvDash A_k$, we must have $\alpha \models B_j$, for all $j \in [n]$. Therefore, $\alpha[p \to 1] \models \psi$. Therefore, ψ is satisfiable.