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Question 1

This statement is False. An easy counterexample to this would be
F = {p,¬p} and G = {q,¬q}.
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Question 2

Theorem

A set of formulae Σ is satisfiable iff every finite subset of it is satisfiable.

This theorem is known as the Compactness Theorem.

Proof.

Proving the backward direction is trivial, as clearly if Σ is satisfiable then
every finite subset of Σ is satisfiable (indeed, every subset is satisfiable).
Let us show that if Σ is not satisfiable, then there exists a finite subset of
it that is unsatisfiable (this suffices to show the forward direction). By the
Completenessa of our Formal Proof System, if Σ is unsatisfiable, then it is
inconsistent, ie Σ ` ⊥. The proof of this statement can use only a finite
number of formulae in Σ (since all proofs are finite). Call this finite subset
Σ′. Our proof of Σ ` ⊥ will also show that Σ′ ` ⊥, and so this Σ′ is a
finite subset of Σ that is unsatisfiable.

aFor this proof to be airtight, our proof of completeness should not depend
on the Compactness Theorem, even in the infinite case. Such proofs do exist.
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Question 2

Since F is inconsistent (and therefore also unsatisfiable), by the
Compactness Theorem there exists a finite subset of F (say F ′) that is
unsatisfiable (and therefore inconsistent). Since F is closed under

conjunction

( ∧
f ∈F ′

f

)
∈ F . Call this F . Clearly {F} ≡ F ′, and therefore

{F} ` ⊥. By ⊥ elimination, for any formula G , we have {F} ` ¬G .
Therefore, we have shown that there exists F ∈ F such that for any
G ∈ F , {F} ` ¬G . This is in fact a stronger statement than what we set
out to prove!
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Question 3

We have to show that if F is not a contradiction and G is not a tautology,
and � (F =⇒ G ), then there exists a formula H such that � (F =⇒ H),
� (H =⇒ G ) and Vars(H) ⊆ Vars(F ) ∩ Vars(G ).
Firstly, note that we do not need the statement that F is not a
contradiction and G is not a tautology. If F is a contradiction, then we
can take H = ⊥ and if G is a tautology we can take H = >.
Removing this clause from the question statement, we shall prove the rest
via induction on |Vars(F )− Vars(G )|. Our inductive hypothesis will be if
|Vars(F )−Vars(G )| = k and � (F =⇒ G ), then there exists H such that
� (F =⇒ H), � (H =⇒ G ) and Vars(H) ⊆ Vars(F ) ∩ Vars(G ).
Base Case:
When k = 0, we have Vars(F ) ⊆ Vars(G ), and therefore we can choose
H = F , which satisfies all the conditions.
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Question 3

Before we proceed to the inductive step,
Lemma:
Say q ∈ Vars(F )− Vars(G ) and � (F =⇒ G ).
Let H = F [q/⊥] ∨ F [q/>]. Then we have � (F =⇒ H) and
� (H =⇒ G ).
Note that for any formula F , F [p/G ] denotes the formula obtained by
replacing all instances of p in F by G .
Proof:
Say an assignment α has α � F . If α(q) = 0, then we have α � F [q/⊥]
and therefore α � H. On the other hand, if α(q) = 1, then α � F [q/>]
and we still have α � H. Therefore, we have α � F =⇒ α � H for all α,
ie F =⇒ H is valid, ie � (F =⇒ H).
Now, let us show the other part. Some notation first: For an assignment
α, α[q → b] is an assignment identical to α except at q, where it is b. We
have α[q → 0] � F ⇐⇒ α � F [q/⊥], α[q → 1] � F ⇐⇒ α � F [q/>].
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Question 3

Assume α � H. We have:

1 α � F [q/⊥] ∨ F [q/>]

2 α[q → 0] � F ∨ α[q → 1] � F

3 α[q → 0] � G ∨ α[q → 1] � G (Since ∀α, α � F =⇒ α � G )

Now, since q /∈ Vars(G ), α[q → b] � G ⇐⇒ α � G , b ∈ {0, 1}.
Therefore,

4 α � G ∨ α � G

5 α � G

Therefore, ∀α, α � H =⇒ α � G , ie � (H =⇒ G )
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Question 3

Now, back to the main proof.
Inductive Step:
Our inductive hypothesis is that for any formulae F and G if
|Vars(F )−Vars(G )| = k and � (F =⇒ G ), then there exists H such that
� (F =⇒ H), � (H =⇒ G ), and Vars(H) ⊆ Vars(F ) ∩ Vars(G ).
Assuming this, we have to prove the hypothesis for the case where
|Vars(F )− Vars(G )| = k + 1. Let q ∈ Vars(F )− Vars(G ), and let
H = F [q/>] ∨ F [q/⊥]. By the previous lemma, we have � (F =⇒ H)
and � (H =⇒ G ). Note that |Vars(H)− Vars(G )| = k . Applying the
inductive hypothesis, there exists H ′ such that � (H =⇒ H ′),
� (H ′ =⇒ G ) and Vars(H ′) ⊆ Vars(H) ∩ Vars(G ). Using � (F =⇒ H)
and the fact that Vars(H) ⊆ Vars(F ), we get � (F =⇒ H ′),
� (H ′ =⇒ G ), and Vars(H ′) ⊆ Vars(F ) ∩ Vars(G ). Therefore, the
inductive hypothesis is proven for k + 1, and thus the statement in the
question is also proven.
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Question 4

Firstly, note that the empty set ∅ is satisfiable (in fact, it is valid)1.
Now, it can be easily shown that the set

Σn = {p1, . . . pn,
n∨

i=1

¬pi}

is an example of a minimal unsatisfiable set for n ≥ 1.

1This is because all universally quantified propositions over the empty set are true -
these are known as vacuous truths.
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Question 5

(a) Mechanically keep calculating Resn(ψ) by resolution, until you find
that ∅ ∈ Res∗(ψ) = Res3(ψ). This correctly tells us that ψ is unsatisfiable
due to the soundness of the resolution proof system.
(b) Let us do resolution in a slightly different way.
Our algorithm is as follows:

1 If Vars(ψ) is empty, then we can immediately conclude the
satisfiability of ψ by checking if ∅ ∈ ψ.

2 If not, pick a variable p ∈ Vars(ψ) such that resolution2 can be done
with pairs of clauses in ψ with p as pivot.

3 If no such variable exists, then we are done with resolution, and we
can check satisfiability by checking if ∅ ∈ ψ.

4 If such a variable exists, replace ψ with Rp(ψ), where Rp(ψ) is formed
by removing all clauses that were involved in resolution from ψ and
replacing them with the newly generated resolved clauses.

5 Go to step 1
2We do not consider resolutions that lead to tautologies
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Question 5

To show that this algorithm works, we show that ψ and Rp(ψ) are
equisatisfiable, ie ψ ` ⊥ ⇐⇒ Rp(ψ) ` ⊥.
The reverse direction is easy to prove here, the clauses of R(ψ) are either
members of ψ or are formed from ψ by resolution, ie any proof that
Rp(ψ) ` ⊥ can easily be converted into a proof that ψ ` ⊥ by replacing
the steps assuming the resolved clauses with their resolutions.
For the forward direction, let us prove the contrapositive, ie Rp(ψ) is
satisfiable =⇒ ψ is satisfiable.
Let ψ = {{p} ∪ Ai : i ∈ {1 . . .m}} ∪ {{¬p} ∪ Bj : j ∈ {1 . . . n}} ∪ C
where Ai ,Bj and C do not contain p.
We have Rp(ψ) = {Ai ∪Bj : (i , j) ∈ [m]× [n],Ai ∪Bj not a tautology}∪C
Let’s say some assignment α has α � Rp(ψ). Firstly, clearly α � C . If
α � Ai for all i ∈ [m], then α[p → 0] � ψ. If there is some k ∈ [m] such
that α 2 Ak , then for all j ∈ [n], we have α � Ak ∪ Bj (this follows from
the membership of the clause in Rp(ψ) for non-tautological clauses and by
definition for the tautologies). Since α 2 Ak , we must have α � Bj , for all
j ∈ [n]. Therefore, α[p → 1] � ψ. Therefore, ψ is satisfiable.
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