CS 228 (M) - Logic in CS Tutorial III - Solutions

Ashwin Abraham

IIT Bombay

24th August, 2023

4 **D F**

 $2Q$

Ashwin Abraham 2023 1 / 12

Ashwin Abraham 2023 2 / 12

メミメメ 急ず

4 ロ ▶ 4 冊

 299

This statement is False. An easy counterexample to this would be $\mathcal{F} = \{p, \neg p\}$ and $\mathcal{G} = \{q, \neg q\}.$

 298

化重新润滑剂

∢ □ ▶ ⊣ 倒 ▶

Theorem

A set of formulae Σ is satisfiable iff every finite subset of it is satisfiable.

This theorem is known as the Compactness Theorem.

Proof.

Proving the backward direction is trivial, as clearly if Σ is satisfiable then every finite subset of Σ is satisfiable (indeed, every subset is satisfiable). Let us show that if Σ is not satisfiable, then there exists a finite subset of it that is unsatisfiable (this suffices to show the forward direction). By the Completeness^a of our Formal Proof System, if Σ is unsatisfiable, then it is inconsistent, ie $\Sigma \vdash \bot$. The proof of this statement can use only a finite number of formulae in Σ (since all proofs are finite). Call this finite subset Σ $^\prime$. Our proof of Σ \vdash \bot will also show that $\Sigma^\prime \vdash \bot$, and so this Σ^\prime is a finite subset of Σ that is unsatisfiable. П

^aFor this proof to be airtight, our proof of completeness should not depend on the Compactness Theorem, even in the infinite case. Such [proofs](https://en.wikipedia.org/wiki/Propositional_calculus#Sketch_of_completeness_proof) do exist.

Since $\mathcal F$ is inconsistent (and therefore also unsatisfiable), by the Compactness Theorem there exists a finite subset of $\mathcal F$ (say $\mathcal F'$) that is unsatisfiable (and therefore inconsistent). Since ${\mathcal F}$ is closed under conjunction $\Big(\begin{array}{c} \mathcal{N} \end{array}$ $f \in \mathcal{F}'$ $\hat{f}(\mathcal{F})\in\mathcal{F}.$ Call this $\mathcal{F}.$ Clearly $\{F\}\equiv\mathcal{F}',$ and therefore ${F} \vdash \bot$. By \bot elimination, for any formula G, we have ${F} \vdash \neg G$. Therefore, we have shown that there exists $F \in \mathcal{F}$ such that for any $G \in \mathcal{F}, \{F\} \vdash \neg G$. This is in fact a stronger statement than what we set out to prove!

つへへ

≮ロ ▶ ⊀ 倒 ▶ ⊀ 君 ▶ ≮ 君 ▶ │ 君

We have to show that if F is not a contradiction and G is not a tautology, and \models $(F \implies G)$, then there exists a formula H such that \models $(F \implies H)$, $\models (H \implies G)$ and $Vars(H) \subseteq Vars(F) \cap Vars(G)$. Firstly, note that we do not need the statement that F is not a contradiction and G is not a tautology. If F is a contradiction, then we can take $H = \perp$ and if G is a tautology we can take $H = \top$. Removing this clause from the question statement, we shall prove the rest via induction on $|Var(s) - Var(s(G)|)$. Our inductive hypothesis will be if $|Vars(F) - Vars(G)| = k$ and $\models (F \implies G)$, then there exists H such that $\models (F \implies H)$, $\models (H \implies G)$ and $Vars(H) \subseteq Vars(F) \cap Vars(G)$. Base Case: When $k = 0$, we have $Vars(F) \subseteq Vars(G)$, and therefore we can choose

 $H = F$, which satisfies all the conditions.

 Ω

K ロ) K 센) K (호) K (호) (호

Before we proceed to the inductive step,

Lemma:

Say
$$
q \in \text{Vars}(F) - \text{Vars}(G)
$$
 and $\models (F \implies G)$.

\nLet $H = F[q/\perp] \vee F[q/\top]$. Then we have $\models (F \implies H)$ and $\models (H \implies G)$.

Note that for any formula F, $F[p/G]$ denotes the formula obtained by replacing all instances of p in F by G .

Proof:

Say an assignment α has $\alpha \models F$. If $\alpha(q) = 0$, then we have $\alpha \models F[q/\perp]$ and therefore $\alpha \models H$. On the other hand, if $\alpha(q) = 1$, then $\alpha \models F[q/\top]$ and we still have $\alpha \models H$. Therefore, we have $\alpha \models F \implies \alpha \models H$ for all α , ie $F \implies H$ is valid, ie $\models (F \implies H)$.

Now, let us show the other part. Some notation first: For an assignment α , α [$\boldsymbol{q} \to \boldsymbol{b}$] is an assignment identical to α except at \boldsymbol{q} , where it is b. We have $\alpha[q \to 0] \models F \iff \alpha \models F[q/\perp], \alpha[q \to 1] \models F \iff \alpha \models F[q/\top].$

 QQQ

(ロト (個) (ミト (重)

Assume $\alpha \models H$. We have:

\n- \n
$$
\alpha \vDash F[q/\perp] \vee F[q/\top]
$$
\n
\n- \n $\alpha[q \to 0] \vDash F \vee \alpha[q \to 1] \vDash F$ \n
\n- \n $\alpha[q \to 0] \vDash G \vee \alpha[q \to 1] \vDash G \text{ (Since } \forall \alpha, \alpha \vDash F \implies \alpha \vDash G)$ \n
\n- \n Now, since $q \notin \text{Vars}(G)$, $\alpha[q \to b] \vDash G \iff \alpha \vDash G, b \in \{0, 1\}$. Therefore,\n
\n

$$
\bullet \ \ \alpha \vDash \mathsf{G} \vee \alpha \vDash \mathsf{G}
$$

$$
\bullet \ \alpha \vDash \mathsf{G}
$$

Therefore, $\forall \alpha, \alpha \models H \implies \alpha \models G$, ie $\models (H \implies G)$ П

 298

- 4 差 8 3 4 差 8

K □ ▶ K 倒 ▶

Now, back to the main proof.

Inductive Step:

Our inductive hypothesis is that for any formulae F and G if $|Vars(F) - Vars(G)| = k$ and $\models (F \implies G)$, then there exists H such that $\models (F \implies H)$, $\models (H \implies G)$, and $Vars(H) \subseteq Vars(F) \cap Vars(G)$. Assuming this, we have to prove the hypothesis for the case where $|Vars(F) - Vars(G)| = k + 1$. Let $q \in Vars(F) - Vars(G)$, and let $H = F[q/\top] \vee F[q/\bot]$. By the previous lemma, we have $\models (F \implies H)$ and $\in (H \implies G)$. Note that $|Vars(H) - Vars(G)| = k$. Applying the inductive hypothesis, there exists H' such that $\models (H \implies H'),$ \vDash $(H' \implies G)$ and $Vars(H') \subseteq Vars(H) \cap Vars(G)$. Using \vDash $(F \implies H)$ and the fact that $\mathit{Vars}(H) \subseteq \mathit{Vars}(F)$, we get $\models (F \implies H')$, $\vDash (H' \implies G)$, and $\mathit{Vars}(H') \subseteq \mathit{Vars}(F) \cap \mathit{Vars}(G)$. Therefore, the inductive hypothesis is proven for $k + 1$, and thus the statement in the question is also proven.

 QQQ

지수는 지금 아버지를 지나가 되었다.

Firstly, note that the empty set \emptyset is satisfiable (in fact, it is valid) 1 . Now, it can be easily shown that the set

$$
\Sigma_n = \{p_1, \ldots p_n, \bigvee_{i=1}^n \neg p_i\}
$$

is an example of a minimal unsatisfiable set for $n > 1$.

 1 This is because all universally quantified propositions over the empty set are true these are known as [vacuous truths.](https://en.wikipedia.org/wiki/Vacuous_truth) ◂**◻▸ ◂◚▸** QQ

(a) Mechanically keep calculating $\mathit{Res}^{\mathit{n}}(\psi)$ by resolution, until you find that $\emptyset \in Res^*(\psi)=Res^3(\psi).$ This correctly tells us that ψ is unsatisfiable due to the soundness of the resolution proof system. (b) Let us do resolution in a slightly different way.

Our algorithm is as follows:

- **1** If $Vars(\psi)$ is empty, then we can immediately conclude the satisfiability of ψ by checking if $\emptyset \in \psi$.
- $\bullet\hspace{0.1cm}$ If not, pick a variable $p\in\mathit{Vars}(\psi)$ such that resolution 2 can be done with pairs of clauses in ψ with p as pivot.
- ³ If no such variable exists, then we are done with resolution, and we can check satisfiability by checking if $\emptyset \in \psi$.
- **4** If such a variable exists, replace ψ with $R_p(\psi)$, where $R_p(\psi)$ is formed by removing all clauses that were involved in resolution from ψ and replacing them with the newly generated resolved clauses.
- **6** Go to step 1

²We do not consider r[es](#page-9-0)olutions that lead to tautologies $\Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box$ QQQ

To show that this algorithm works, we show that ψ and $R_p(\psi)$ are equisatisfiable, ie $\psi \vdash \bot \iff R_p(\psi) \vdash \bot$.

The reverse direction is easy to prove here, the clauses of $R(\psi)$ are either members of ψ or are formed from ψ by resolution, ie any proof that $R_p(\psi) \vdash \bot$ can easily be converted into a proof that $\psi \vdash \bot$ by replacing the steps assuming the resolved clauses with their resolutions. For the forward direction, let us prove the contrapositive, ie $R_p(\psi)$ is satisfiable $\implies \psi$ is satisfiable. Let $\psi=\{\{\rho\}\cup A_i:i\in\{1\ldots m\}\}\cup\{\{\neg\rho\}\cup B_j:j\in\{1\ldots n\}\}\cup C$

where A_i,B_j and $\mathcal C$ do not contain $p.$ We have $R_{\rho}(\psi)=\{A_{i}\cup B_{j}:(i,j)\in[m]\times[n],A_{i}\cup B_{j}\text{ not a tautology}\}\cup\mathcal{C}$ Let's say some assignment α has $\alpha \models R_{p}(\psi)$. Firstly, clearly $\alpha \models C$. If $\alpha\vDash A_{i}$ for all $i\in[m]$, then $\alpha[\rho\rightarrow0]\vDash\psi.$ If there is some $k\in[m]$ such that $\alpha \nvDash A_k$, then for all $j \in [n]$, we have $\alpha \vDash A_k \cup B_j$ (this follows from the membership of the clause in $R_p(\psi)$ for non-tautological clauses and by definition for the tautologies). Since $\alpha \nvDash A_k$, we must have $\alpha \vDash B_j$, for all $j \in [n]$. Therefore, $\alpha[p \to 1] \models \psi$ $\alpha[p \to 1] \models \psi$ $\alpha[p \to 1] \models \psi$. Therefore, ψ [is](#page-10-0) s[at](#page-11-0)is[fiab](#page-11-0)l[e.](#page-10-0) 200