Solutions to Tutorial Sheet 1

(1) For a given $\epsilon > 0$, we have to find $n_0 \in \mathbb{N}$ such that $|a_n| < \epsilon$ for all $n \ge n_0$. To this end, use the Archimedian property to select $n_0\in\mathbb{N}$ such that

(i)
$$
n_0 > \frac{10}{\epsilon}
$$
,
\n(ii) $n_0 > \frac{5 - \epsilon}{3\epsilon}$,
\n(iii) $n_0 > \frac{1}{\epsilon^3}$ as $\frac{1}{n^{\frac{1}{3}}} > \frac{n^{\frac{2}{3}}}{n+1} > |a_n|$,
\n(iv) $n_0 > \frac{2}{\epsilon}$ as $\frac{2}{n} > \frac{1}{n} \left(2 - \frac{1}{n+1}\right) = |a_n|$.
\n(2) (i) $\frac{n^2}{n^2 + n} \le a_n \le \frac{n^2}{n^2 + 1} \Rightarrow \lim_{n \to \infty} a_n = 1$.
\n(ii) $0 < \frac{n!}{n^n} = \left(\frac{n-1}{n}\right) \left(\frac{n-2}{n}\right) \cdots \left(\frac{2}{n}\right) \left(\frac{1}{n}\right) \le \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{n!}{n^n} = 0$.
\n(iii) $0 < \frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2} = \frac{(1/n) + (3/n^2) + (1/n^4)}{1 + (8/n^2) + (2/n^4)}$ $\left(\frac{4}{n}\right)^2 \lim_{n \to \infty} a_n = 0$.
\n(iv) Let $n^{\frac{1}{n}} = 1 + h_n$. Then, for $n \ge 2$, one has
\n $n = (1 + h_n)^n \ge 1 + nh_n + {n \choose 2} h_n^2 > {n \choose 2} h_n^2$.

Thus $0 < h_n^2 < \frac{2}{n-1}$ $\frac{2}{n-1}$ ($n \ge 2$) giving $\lim_{n \to \infty} h_n = 0$. So $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$.

(v) Since

$$
0 < \left| \frac{\cos(\pi \sqrt{n})}{n^2} \right| \le \frac{1}{n^2},
$$

it follows that $\lim_{n\to\infty} a_n = 0$.

(vi)
$$
\sqrt{n}(\sqrt{n+1} - \sqrt{n}) = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} \to \frac{1}{2}
$$
 as $n \to \infty$.

(3) (i)
$$
\{\frac{n^2}{n+1} = (n-1) + \frac{1}{n+1}\}_{n \ge 1}
$$
 is not convergent since $\frac{1}{n+1} \to 0$ as $n \to \infty$.\n\n(ii) $\{(-1)^n \left(\frac{1}{2} - \frac{1}{n}\right) = \frac{(-1)^n}{2} - \frac{(-1)^n}{n}\}_{n \ge 1}$ is not convergent since $\frac{(-1)^n}{n} \to 0$ as $n \to \infty$.

\n- (4) (i) Decreasing as
$$
a_n = 1/\left(n + \frac{1}{n}\right)
$$
 and $\{n + \frac{1}{n}\}_{n \ge 1}$ is increasing.
\n- (ii) Increasing as $\frac{a_{n+1}}{a_n} = \frac{6}{5} > 1$.
\n- (iii) Increasing as $a_{n+1} - a_n = \frac{n(n-1) - 1}{n^2(1+n)^2} > 0$ for $n \ge 2$.
\n

- (5) (i) By the AM-GM inequality, we see that $a_n \geq$ √ 2 for all $n \geq 2$. Consequently, $a_{n+1} - a_n = \frac{2 - a_n^2}{2a_n} \leq 0$ for $n \geq 2$. Thus $\{a_n\}_{n \geq 2}$ is monotonically decreasing and bounded below by $\sqrt{2}$. So $\lim_{n\to\infty} a_n = a$ (say) exists, and $a \geq$ √ 2. Also $a=\frac{1}{2}$ $rac{1}{2}(a + \frac{2}{a})$ $\left(\frac{2}{a}\right)$, i.e., $a^2 = 2$. It follows that $a =$ √ 2.
	- (ii) By induction, $\sqrt{2} \le a_n < 2 \forall n$. Hence $a_{n+1} a_n = \frac{(2-a_n)(1+a_n)}{\sqrt{2+a_n}+a_n} > 0 \forall n$. Thus $\lim_{n\to\infty} a_n = a$ (say) exists and arguing as in (i), we find $a = 2$.
	- (iii) By induction, $2 \le a_n < 6 \forall n$. Hence $a_{n+1} a_n = \frac{6-a_n}{2} > 0 \forall n$. Thus $\lim_{n \to \infty} a_n =$ a (say) exists and arguing as in (i), we find $a = 6$.
- (6) It is clear that $\lim_{n\to\infty} a_{n+1} = L$. The inequality $||a_n| |L|| \leq |a_n L|$ implies that $\lim_{n\to\infty} |a_n| = |L|.$
- (7) Take $\epsilon = |L|/2$. Then $\epsilon > 0$ and since $a_n \to L$, there exists $n_0 \in \mathbb{N}$ such that $|a_n L| < \epsilon$ $\forall n \geq n_0$. Now $||a_n| - |L|| \leq |a_n - L|$ and hence $|a_n| > |L| - \epsilon = |L|/2 \ \forall n \geq n_0$.
- (8) Given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n| < \epsilon^2 \ \forall n \geq n_0$. Hence $|\sqrt{a_n}| < \epsilon$ $\forall n \geq n_0$. [Note: For a corresponding result when $a_n \to L$, see, e.g., part (ii) of Propositions 1.9 and 2.4 of [GL-1].]
- (9) Both the statements are false. Consider, for example, $a_n = 1$ and $b_n = (-1)^n$.
- (10) The implication " \Rightarrow " is obvious. For the converse, suppose both $\{a_{2n}\}_{n\geq 1}$ and $\{a_{2n+1}\}_{n\geq 1}$ converge to ℓ . Let $\epsilon > 0$ be given. Choose $n_1, n_2 \in \mathbb{N}$ such that $|a_{2n} - \ell| < \epsilon$ for all $n \geq n_1$ and $|a_{2n+1} - \ell| < \epsilon$ for all $n \geq n_2$. Let $n_0 = \max\{n_1, n_2\}$. Then

$$
|a_n - \ell| < \epsilon \quad \text{for all} \quad n \ge 2n_0 + 1.
$$