Solutions to Tutorial Sheet 2

(1) (i) The statement is false. For example, consider ¢ = —1, b =1, ¢ = 0 and

define f,g: (—1,1) = R by

1 ifz=0
f(z) =2z and g(z)=
/2% if x #0.

(ii) The statement is true since |g(x)] < M for all z € (a,b) implies that

0 <|f(x)g(x)] < M|f(x)| for all x € (a,b).

(iii) The statement is true since lim f(x)g(x) = lim f(z) lim g(x).
T—cC Tr—cC Tr—cC

(2) Suppose ilgcly f(z) = L. Then }ILILIEL) f(a+h) = L. and since
[fle+h) = fla=h)| <[fla+h) = LI+ [f(a = h) = L]

it follows that

lim |f(a+ h) — f(a—h)| = 0.
h—0
The converse is false; e.g. consider o = 0 and

1 if z=0
flx) =
L if 2 #£0.

||
(3) (i) Continuous everywhere except at x = 0. To see that f is not continuous at

00, consider the sequences {z, }n>1, {Yn}n>1 Where

1 1
Ty = — and Yy, = —F0.
nmw 2nmw + 3

Note that both z,, y, — 0, but f(z,) — 0 and f(y,) — 1.

(ii) Continuous everywhere. For ascertaining the continuity of f at z = 0,

note that |f(x)| < |z| and f(0) = 0.
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(iii) Continuous everywhere on [1, 3] except at x = 2.
(4) Taking x = 0 =y, we get f(0+0) = 2f(0) so that f(0) = 0. By the assumption

of the continuity of f at 0, lim,_,o f(x) = 0. Thus,

lim f(e+h) = lim[f(c) + f(h)] = f(c)

showing that f is continuous at z = c.
Optional: First verify the equality for all £ € Q and then use the continuity of
f to establish it for all £ € R.

(5) Clearly, f is differentiable for all x # 0 and the derivative is

f(z) =2« sin(i) — cos(é), x #0.

Also,
h?sin(+) — 0
/ p— 1 —h pu—
110) = }lzlg(l) h 0

Clearly, f’ is continuous at any x # 0. However, liH(l] f'(x) does not exist. Indeed,
x>

for any 0 > 0, we can choose n € N such that z := 1/n7m, y:=1/(n+ 1)7 are
n (_57 6)7 but |f’<I> - f/(y)| = 2.

(6) The inequality

0§‘f<x+h;_f($) §C|h|o¢—1
implies, by the Sandwich Theorem, that
’lliir(l) flo+ h})L — /@) =0 Vz € (a,b).
(7) For the first part, observe that
. fle+h)=fle=h) _ . 1[flc+h)—flc) [fle=h)=f(c)
i 2h = Jdm { h + iy
1
= @+l = f()

The converse is false; consider, for example, f(z) = |z| and ¢ = 0.
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(8) Since f(x +y) = f(x)f(y), we obtain, in particular, f(0) = f(0)2 and therefore
f(0)=0or 1. If f(0) =0, then

f(x+0) = f(2)f(0) = f(x) =0 V.

Thus, trivially, f is differentiable. If f(0) = 1, then

1oy e dCER) = ) -
f'(c) = lim Y = f(c) <hm

h—0 h—0 h

(9) (i) Let f(z) = cos(x). Then f'(z) = —sin(z) # 0 for x € (0,7).
Thus g(y) = f'(y) = cos ' (y), —1 <y <1 is differentiable
and

§'(y) = ——, where z is such that f(z) =y.

Therefore,

(ii) Note that

1
cosec (z) =sin~! — for |z| > 1.
T

Since
d 1
%sin_l(az) = ﬁ for ‘.’ﬂ’ < 1,
one has, by the Chain rule,
d 1 —1
— cosec” (1) = ————= <—2) , x| > 1.

(10) By the Chain rule,
dy _ 20 -1\ d (2z—1
dz rx+1 )der \ z+1

_ (1 I 3 1 3 (221 ?
B r+1 (z+1)2]  (z+1)2 r+1)




(11) Consider f(z) := |z|+ |1 — z| for x € R.

(12) For ¢ € R, select a sequence {a,, },>1 of rational numbers and a sequence {b, },>1
of irrational numbers, both converging to c¢. Then {f(a,)},>1 converges to 1

while {f(b,)}n>1 converges to 0, showing that limit of f at ¢ does not exist.

(13) Suppose ¢ # 1/2. If {a,},>1 is a sequence of rational numbers and {b,},>1 a
sequence of irrational numbers, both converging to ¢, then g(a,) = a, — ¢,
while ¢g(b,) =1 -0, - 1 —¢, and ¢ # 1 — ¢. Thus g is not continuous at
any ¢ # 1/2. Further, if {a,},>1 is any sequence converging to ¢ = 1/2, then

g(a,) = 1/2 = g(1/2). Hence, g is continuous at ¢ = 1/2.

(14) Let L = lim,,. f(x). Take € = L —a. Then ¢ > 0 and so there exists a § > 0
such that

|[f(c+h)—L|<efor 0<|h|<é.
Consequently, f(c+h) > L—e=a for 0< |h] <.

(15) (i) = (ii): Choose 0 > 0 such that (¢ —d,c+9) C (a,b). Take o = f’(c) and
fle+h)— flc)—ah

) . . i h#£0
0, it h=0.

(i) = (iil): lim fleth) ’_h{@ —ahl _ lim |6y (h)] = 0
fle+h) = [f(c) fle+h) = f(c)

(iii) = (i): lim exists

h—0 h h—0 h

and is equal to a.
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