
Solutions to Tutorial Sheet 3

(1) f(x) = x3 − 6x+ 3 has stationary points at x = ±
√

2.

Note that f(−
√

2) = 4
√

2 + 3 > 0, f(+
√

2) = −4
√

2 + 3 < 0. Therefore f has a

root in (−
√

2,
√

2). Also, f → −∞ as x→ −∞ implying that f has a root in

(−∞,−
√

2). Similarly, f → +∞ as x → +∞ implying that f has a root in

(
√

2,∞). Since f has at most three roots, all its root are real.

(2) For f(x) = x3 + px+ q, p > 0, f ′(x) = 3x2 + p > 0. Therefore f is strictly in-

creasing and can have at most one real root. Since

lim
x→±∞

( p
x2

+
q

x3

)
= 0,

f(x)

x3
= 1 +

p

x2
+

q

x3
> 0

for |x| very large. Thus f(x) > 0 if x is large positive and f(x) < 0 if x is large

negative. By the Intermediate Value Property (IVP) f must have at least

one real root.

(3) By the IVP, there exists at least one x0 ∈ (a, b) such that f(x0) = 0. If there

were another y0 ∈ (a, b) such that f(y0) = 0, then by Rolle’s theorem there

would exist some c between x0 and y0 (and hence between a and b) with

f ′(c) = 0, leading to a contradiction.

(4) Since f has 3 distinct roots, say, r1 < r2 < r3, by Rolle’s theorem f ′(x) has at

least two real roots, say, x1 and x2 such that r1 < x1 < r2 and r2 < x2 < r3.

Since f ′(x) = 3x2 + p, this implies that p < 0, and x1 = −
√
−p/3, x2 =√

−p/3. Now, f ′′(x1) = 6x1 < 0 =⇒ f has a local maximum at x = x1.

Similarly, f has a local minimum at x = x2. Since the quadratic f ′(x) is
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negative between its roots x1 and x2 (so that f is decreasing over [x1, x2]) and

f has a root r2 in (x1, x2), we must have f(x1) > 0 and f(x2) < 0. Further,

f(x1) = q +

√
−4p3

27
, f(x2) = q −

√
−4p3

27

so that

4p3 + 27q2

27
= f(x1)f(x2) < 0.

(5) For some c between a and b, one has∣∣∣∣sin(a)− sin(b)

a− b

∣∣∣∣ = | cos(c)| ≤ 1.

(6) By Lagrange’s Mean Value Theorem (MVT) there exists c1 ∈
(
a, (a+b)

2

)
such that

f
(
a+b
2

)
− f(a)(

b−a
2

) = f ′(c1)

and there exists c2 ∈
(
a+b
2
, b
)

such that

f(b)− f
(
a+b
2

)(
b−a
2

) = f ′(c2).

Clearly one has c1 < c2, and adding the above equations one obtains

f ′(c1) + f ′(c2) =
f(b)− f(a)(

b−a
2

) = 2 (as f(b) = b, f(a) = a).

(7) By Lagrange’s MVT, there exists c1 ∈ (−a, 0) and there exists c2 ∈ (0, a) such

that

f(0)− f(−a) = f ′(c1)a and f(a)− f(0) = f ′(c2)a.

Using the given conditions, we obtain

f(0) + a ≤ a and a− f(0) ≤ a

which implies f(0) = 0.

Optional: Consider g(x) = f(x)− x, x ∈ [−a, a]. Since g′(x) = f ′(x)− 1 ≤ 0, g

is decreasing over [−a, a]. As g(−a) = g(a) = 0, we have g ≡ 0.
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(8) (i) No such function exists in view of Rolle’s theorem.

(ii) f(x) = x2

2
+ x

(iii) f ′′ ≥ 0 ⇒ f ′ increasing. As f ′(0) = 1, by Lagrange’s MVT we have

f(x)− f(0) ≥ x for x > 0. Hence f with the required properties cannot

exist.

(iv)

f(x) =


1

1−x if x ≤ 0

1 + x+ x2 if x > 0.

(9) The points to check are the end points x = −2 and x = 5, the point of non-

differentiability x = 0, and the stationary point x = 2. The values of f at

these points are given by

f(−2) = f(2) = 13, f(0) = 1, f(5) = −14.

Thus, global max = 13 at x = ±2, and global min = −14 at x = 5.

(10) Let 2a be the width of the window and h be its height. Then 2a+ 2h+ πa = p,

and 0 ≤ a ≤ p

2 + π
. As the area of the colored glass is πa2

2
and the area of the

plane glass is 2ah, the total light admitted is

L(a) = 2ah+
πa2

4
= 2a

[
p− (π + 2)a

2

]
+
πa2

4
(0 ≤ a ≤ p

2 + π
).

Since

L′(a) = 0⇒ a =
2p

8 + 3π

and

L′(a) > 0 in [ 0,
2p

8 + 3π
) and L′(a) < 0 in (

2p

8 + 3π
,

p

2 + π
],

a =
2p

8 + 3π
must give the global maximum. That yields h =

p(4 + π)

2(8 + 3π)
.
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