Solutions to Tutorial Sheet 4

(i) $f(x) = 2x^3 + 2x^2 - 2x - 1 \Rightarrow f'(x) = 6x^2 + 4x - 2 = 2(x+1)(3x-1).$

Thus, f'(x) > 0 in $(-\infty, -1) \cup (1/3, \infty)$ so that f(x) is strictly increasing in those intervals, and f'(x) < 0 in (-1, 1/3) so that f(x) is strictly decreasing in that interval. Thus, f(x) has a local maximum at x = -1, and a local minimum at $x = \frac{1}{3}$. As f''(x) = 12x + 4 we have that f(x) is convex in $\left(-\frac{1}{3}, \infty\right)$ and concave in $\left(-\infty, -\frac{1}{3}\right)$, with a point of inflection at $x = -\frac{1}{3}$.

(ii)
$$y = \frac{x^2}{x^2 + 1} \Rightarrow \lim_{x \to \pm \infty} y = 1 \Rightarrow y = 1$$
 is an asymptote.
 $y' = \frac{2x}{(x^2 + 1)^2} \Rightarrow y$ is increasing in $(0, \infty)$ and decreasing in $(-\infty, 0)$.
Further, $y'' = -\frac{2(3x^2 - 1)}{(x^2 + 1)^3}$ implies that $y'' > 0$ if $|x| < \frac{1}{\sqrt{3}}$, and $y'' < 0$ if $|x| > \frac{1}{\sqrt{3}}$.
Therefore,

y is convex in
$$\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
 and concave in $\mathbb{R} \setminus \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$

with the points $x = \pm \frac{1}{\sqrt{3}}$ being the points of inflection.

(iii)
$$f(x) = 1 + 12|x| - 3x^2$$
; f is not differentiable at $x = 0$; $f(0) = 1$. Further, $f'(x) = 0$ at $x = \pm 2$, $f'(x) < 0$ in $(-2, 0) \cup (2, 5]$, $f'(x) > 0$ in $(0, 2)$, and

 $f''(x) = -6 \operatorname{in} (-2, 0) \cup (0, 5)$. Thus f is concave $\operatorname{in} (-2, 0) \cup (0, 5)$, decreasing in $(-2, 0) \cup (2, 5)$, and increasing in (0, 2); further, f has an absolute maximum at $x = \pm 2$.

Graphs

a south of infloction at any --------

(2) In view of the given conditions, f has a local max at x = -2 and a local min at x = 2, f is concave in (-∞, 0) and convex in (0,∞), and x = 0 is a point of inflection.

(3) Motivate students to discover their own examples.

(i) f' > 0, f'' > 0.

Example: $f(x) = x^2$; 0 < x < 1.

- (ii) f' > 0, f'' < 0.Example: $f(x) = \sqrt{x}; 0 < x < 1.$
- (iii) f' < 0, f'' > 0.

Example: $f(x) = -\sqrt{x}; \ 0 < x < 1.$

(iv) f' < 0, f'' < 0.

Example: $f(x) = -x^2$; 0 < x < 1.

- (4) (i) The statement is **true**. In $(c \delta, c + \delta)$, $f(x) \le f(c)$, $g(x) \le g(c)$. As all the quantities are non-negative, $f(x)g(x) \le f(c)g(c)$ in $(c \delta, c + \delta)$.
 - (ii) The statement is **false.** E.g. $f(x) = g(x) = 1 + \sin(x)$, c = 0.
- (5) The given function is integrable as it is monotone. Let P_n be the partition of [0,2] into 2×2^n equal parts. Then $U(P_n, f) = 3$ and

$$L(P_n, f) = 1 + 1 \times \frac{1}{2^n} + 2 \times \frac{(2^n - 1)}{2^n} \to 3$$

as $n \to \infty$. Thus, $\int_0^2 f(x) dx = 3$.

- (6) $f(x) \ge 0 \Rightarrow U(P, f) \ge 0, \ L(P, f) \ge 0 \Rightarrow \int_a^b f(x) dx \ge 0.$
- Suppose, moreover, f is continuous and $\int_a^b f(x)dx = 0$. Assume f(c) > 0 for some c in [a, b]. Then $f(x) > \frac{f(c)}{2}$ in a δ -nbhd of c for some $\delta > 0$. This implies that

$$U(P, f) > \delta \times \frac{f(c)}{2}$$

for any partition P, and hence, $\int_a^b f(x) dx \ge \delta f(c)/2 > 0$, a contradiction.

(7) (i)
$$S_n = \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^{\frac{3}{2}} \longrightarrow \int_0^1 (x)^{3/2} dx = \frac{2}{5}$$

(ii) $S_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{\left(\frac{i}{n}\right)^2 + 1} \longrightarrow \int_0^1 \frac{dx}{x^2 + 1} = \frac{\pi}{4}$
(iii) $S_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sqrt{\frac{i}{n} + 1}} \longrightarrow \int_0^1 \frac{dx}{\sqrt{x + 1}} = 2(\sqrt{2} - 1)$
(iv) $S_n = \frac{1}{n} \sum_{i=1}^n \cos \frac{i\pi}{n} \longrightarrow \int_0^1 \cos \pi x dx = 0$
(v) $S_n \longrightarrow \int_0^1 x dx + \int_1^2 x^{3/2} dx + \int_2^3 x^2 dx = \frac{1}{2} + \frac{2}{5}(4\sqrt{2} - 1) + \frac{19}{3}$
(8) Let $F(x) = \int_a^x f(t) dt$. Then $F'(x) = f(x)$. Note that

Let
$$F(x) = \int_{a}^{v(x)} f(t) dt = \int_{a}^{v(x)} f(t) dt = \int_{a}^{u(x)} f(t) dt = F(u(x))$$

$$\int_{u(x)}^{v(x)} f(t)dt = \int_{a}^{v(x)} f(t)dt - \int_{a}^{u(x)} f(t)dt = F(v(x)) - F(u(x)).$$

By the Chain Rule one has

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t)dt = F'(v(x))v'(x) - F'(u(x))u'(x)$$
$$= f(v(x))v'(x) - f(u(x))u'(x).$$

(a)
$$\frac{dy}{dx} = \frac{1}{dx/dy} = \sqrt{1+y^2}, \quad \frac{d^2y}{dx^2} = \frac{y}{\sqrt{1+y^2}}\frac{dy}{dx} = y.$$

(b) (i) $F'(x) = \cos((2x)^2)2 = 2\cos(4x^2).$
(ii) $F'(x) = \cos(x^2)2x = 2x\cos(x^2)$

(9) Define

$$F(x) = \int_{x}^{x+p} f(t)dt, \ x \in \mathbb{R}.$$

Then F'(x) = 0 for every x.

(10) Write sin λ(x - t) as sin(λx) cos(λt) - cos(λx) sin(λt) in the integrand, take trems in x outside the integral, evaluate g'(x), g''(x), and simplify to show LHS=RHS; from the expressions for g(x) and g'(x) it should be clear that g(0) = g'(0) = 0. The problem could also be solved by appealing to the following theorem:

Theorem A. Let h(t, x) and $\frac{\partial h}{\partial x}(t, x)$ be continuous functions of t and x on the rectangle $[a, b] \times [c, d]$. Let u(x) and v(x) be differentiable functions of x on [c, d] such that, for each x in [c, d], the points (u(x), x) and (v(x), x) belong to $[a, b] \times [c, d]$. Then

$$\frac{d}{dx} \int_{u(x)}^{v(x)} h(t,x) dt = \int_{u(x)}^{v(x)} \frac{\partial h}{\partial x}(t,x) dt - u'(x)h(u(x),x) + v'(x)h(v(x),x).$$

Consider now

$$g(x) = \frac{1}{\lambda} \int_0^x f(t) \sin \lambda (x-t) dt.$$

Let $h(t,x) = \frac{1}{\lambda}f(t)\sin\lambda(x-t)$, u(x) = 0, and v(x) = x. Then it follows from Theorem A that

$$g'(x) = \int_0^x f(t) \cos \lambda(x-t).$$

Again applying Theorem A, we have

$$g''(x) = -\lambda \int_0^x f(t) \sin \lambda(x-t) + f(x).$$

Thus

$$g''(x) + \lambda^2 g(x) = f(x).$$

That g(0) = g'(0) = 0 is obvious from the expressions for g(x) and g'(x).