
Solutions to Tutorial Sheet 4

(i) f(x) = 2x3 + 2x2 − 2x− 1⇒ f ′(x) = 6x2 + 4x− 2 = 2(x+ 1)(3x− 1).

Thus, f ′(x) > 0 in (−∞,−1) ∪ (1/3,∞) so that f(x) is strictly increasing in

those intervals, and f ′(x) < 0 in (−1, 1/3) so that f(x) is strictly decreasing in that interval.

Thus, f(x) has a local maximum at x = −1, and a local minimum atx = 1
3
.

As f ′′(x) = 12x+ 4 we have that f(x) is convex in
(
−1

3
,∞
)

and concave in
(
−∞,−1

3

)
,

with a point of inflection at x = −1

3
.

(ii) y =
x2

x2 + 1
⇒ lim

x→±∞
y = 1⇒ y = 1 is an asymptote.

y′ =
2x

(x2 + 1)2
⇒ y is increasing in (0,∞) and decreasing in (−∞, 0).

Further, y′′ = −2(3x2−1)
(x2+1)3

implies that y′′ > 0 if |x| < 1√
3
, and y′′ < 0 if |x| > 1√

3
.

Therefore,

y is convex in

(
− 1√

3
,

1√
3

)
and concave in R \

[
− 1√

3
,

1√
3

]
with the points x = ± 1√

3
being the points of inflection.

(iii) f(x) = 1 + 12|x| − 3x2; f is not differentiable at x = 0; f(0) = 1. Further, f ′(x) =

0 at x = ±2, f ′(x) < 0 in (−2, 0) ∪ (2, 5], f ′(x) > 0 in (0, 2), and

f ′′(x) = −6 in (−2, 0) ∪ (0, 5). Thus f is concave in(−2, 0) ∪ (0, 5), decreasing in

(−2, 0) ∪ (2, 5), and increasing in (0, 2); further, f has an absolute maximum at

x = ±2.
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(2) In view of the given conditions, f has a local max at x = −2 and

a local min at x = 2, f is concave in (−∞, 0) and convex in (0,∞), and

x = 0 is a point of inflection.

(3) Motivate students to discover their own examples.

(i) f ′ > 0, f ′′ > 0.

Example: f(x) = x2; 0 < x < 1.

(ii) f ′ > 0, f ′′ < 0.

Example: f(x) =
√
x; 0 < x < 1.

(iii) f ′ < 0, f ′′ > 0.

Example: f(x) = −
√
x; 0 < x < 1.

(iv) f ′ < 0, f ′′ < 0.

Example: f(x) = −x2; 0 < x < 1.

(4) (i) The statement is true. In (c− δ, c+ δ), f(x) ≤ f(c), g(x) ≤ g(c). As all the

quantities are non-negative, f(x)g(x) ≤ f(c)g(c) in (c− δ, c+ δ).

(ii) The statement is false. E.g. f(x) = g(x) = 1 + sin(x), c = 0.

(5) The given fumction is integrable as it is monotone. Let Pn be the partition of

[0, 2] into 2× 2n equal parts. Then U(Pn, f) = 3 and

L(Pn, f) = 1 + 1× 1

2n
+ 2× (2n − 1)

2n
→ 3

as n→∞. Thus,
∫ 2

0
f(x)dx = 3.

(6) f(x) ≥ 0⇒ U(P, f) ≥ 0, L(P, f) ≥ 0⇒
∫ b
a
f(x)dx ≥ 0.

Suppose, moreover, f is continuous and
∫ b
a
f(x)dx = 0. Assume f(c) > 0 for

some c in [a, b]. Then f(x) > f(c)
2

in a δ-nbhd of c for some δ > 0. This

implies that

U(P, f) > δ × f(c)

2

2



for any partition P, and hence,
∫ b
a
f(x)dx ≥ δf(c)/2 > 0, a contradiction.

(7) (i) Sn =
1

n

n∑
i=1

(
i

n

) 3
2

−→
∫ 1

0

(x)3/2dx =
2

5

(ii) Sn =
1

n

n∑
i=1

1(
i
n

)2
+ 1
−→

∫ 1

0

dx

x2 + 1
=
π

4

(iii) Sn =
1

n

n∑
i=1

1√
i
n

+ 1
−→

∫ 1

0

dx√
x+ 1

= 2(
√

2− 1)

(iv) Sn =
1

n

n∑
i=1

cos
iπ

n
−→

∫ 1

0

cosπxdx = 0

(v) Sn −→
∫ 1

0

xdx+

∫ 2

1

x3/2dx+

∫ 3

2

x2dx =
1

2
+

2

5
(4
√

2− 1) +
19

3

(8) Let F (x) =
∫ x
a
f(t)dt. Then F ′(x) = f(x). Note that∫ v(x)

u(x)

f(t)dt =

∫ v(x)

a

f(t)dt−
∫ u(x)

a

f(t)dt = F (v(x))− F (u(x)).

By the Chain Rule one has

d

dx

∫ v(x)

u(x)

f(t)dt = F ′(v(x))v′(x)− F ′(u(x))u′(x)

= f(v(x))v′(x)− f(u(x))u′(x).

(a) dy
dx

= 1
dx/dy

=
√

1 + y2, d2y
dx2

= y√
1+y2

dy
dx

= y.

(b) (i) F ′(x) = cos((2x)2)2 = 2 cos(4x2).

(ii) F ′(x) = cos(x2)2x = 2x cos(x2)

(9) Define

F (x) =

∫ x+p

x

f(t)dt, x ∈ R.

Then F ′(x) = 0 for every x.

(10) Write sinλ(x − t) as sin(λx) cos(λt) − cos(λx) sin(λt) in the integrand, take

trems in x outside the integral, evaluate g′(x), g′′(x), and simplify to show

LHS=RHS; from the expressions for g(x) and g′(x) it should be clear that

g(0) = g′(0) = 0.
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The problem could also be solved by appealing to the following theorem:

Theorem A. Let h(t, x) and ∂h
∂x

(t, x) be continuous functions of t and x on the

rectangle [a, b] × [c, d]. Let u(x) and v(x) be differentiable functions of x on

[c, d] such that, for each x in [c, d], the points (u(x), x) and (v(x), x) belong

to [a, b]× [c, d]. Then

d

dx

∫ v(x)

u(x)

h(t, x)dt =

∫ v(x)

u(x)

∂h

∂x
(t, x)dt− u′(x)h(u(x), x) + v′(x)h(v(x), x).

Consider now

g(x) =
1

λ

∫ x

0

f(t) sinλ(x− t)dt.

Let h(t, x) = 1
λ
f(t) sinλ(x− t), u(x) = 0, and v(x) = x. Then it follows from

Theorem A that

g′(x) =

∫ x

0

f(t) cosλ(x− t).

Again applying Theorem A, we have

g′′(x) = −λ
∫ x

0

f(t) sinλ(x− t) + f(x).

Thus

g′′(x) + λ2g(x) = f(x).

That g(0) = g′(0) = 0 is obvious from the expressions for g(x) and g′(x).
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