
Solutions to Tutorial Sheet 6

(1) (i) {(x, y) ∈ R2 | x 6= ±y}

(ii) R2 − {(0, 0)}

(2) (i) A level curve corresponding to any of the given values of c is the straight line

x − y = c in the xy-plane. A contour line corresponding to any of the

given values of c is the same line shifted to the plane z = c in R3.

(ii) Level curves do not exist for c = −3,−2,−1. The level curve corre-

sponding to c = 0 is the point (0, 0). The level curves corresponding

to c = 1, 2, 3, 4 are concentric circles centered at the origin in the xy-

plane. Contour lines corresponding to c = 1, 2, 3, 4 are the cross-sections

in R3 of the paraboloid z = x2 + y2 by the plane z = c, i.e., circles in the

plane z = c centered at (0, 0, c).

(iii) For c = −3,−2,−1, level curves are rectangular hyperbolas xy = c

in the xy-plane with branches in the second and fourth quadrant. For

c = 1, 2, 3, 4, level curves are rectangular hyperbolas xy = c in the xy-

plane with branches in the first and third quadrant. For c = 0, the

corresponding level curve (resp. the contour line) is the union of the x-

axis and the y-axis in the xy-plane (resp. in the xyz-space). A contour

line corresponding to a non-zero c is the cross-section of the hyperboloid

z = xy by the plane z = c, i.e., a rectangular hyperbola in the plane

z = c.

(3) (i) Discontinuous at (0, 0). (Check lim
(x,y)→(0,0)

f(x, y) using y = mx3).

(ii) Continuous at (0, 0) :
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∣∣∣∣xyx2 − y2

x2 + y2

∣∣∣∣ ≤ |xy|x2 + y2

x2 + y2
= |xy|.

(iii) Continuous at (0, 0) :

|f(x, y)| ≤ 2(|x|+ |y|) ≤ 4
√
x2 + y2.

(4) (i) Use the sequential definition of limit: (xn, yn)→ (a, b) =⇒ xn → a and yn →

b =⇒ f(xn)→ f(a) and g(yn)→ g(b) =⇒ f(xn)± g(yn)→ f(a)± g(b)

by the continuity of f, g and limit theorems for sequences.

(ii) (xn, yn)→ (a, b) =⇒ xn → a and yn → b =⇒ f(xn)→ f(a) and g(yn)→

g(b) =⇒ f(xn)g(yn)→ f(a)g(b) by the continuity of f, g and limit the-

orems for sequences.

(iii) Follows from (i) above and the following:

min{f(x), g(y)} =
f(x) + g(y)

2
− |f(x)− g(y)|

2
,

max{f(x), g(y)} =
f(x) + g(y)

2
+
|f(x)− g(y)|

2
.

(5) Note that limits are different along different paths: f(x, x) = 1 for every x and

f(x, 0) = 0.

(6) (i) fx(0, 0) = 0 = fy(0, 0).

(ii)

fx(0, 0) = lim
h→0

sin2(h)/|h|
h

= lim
h→0

sin2(h)

h|h|

does not exist (Left Limit 6= Right Limit). Similarly, fy(0, 0) does not

exist.

(7) |f(x, y)| ≤ x2 + y2 ⇒ f is continuous at(0, 0).

It is easily checked that fx(0, 0) = fy(0, 0) = 0.
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Now,

fx = 2x

(
sin

(
1

x2 + y2

)
− 1

x2 + y2
cos

(
1

x2 + y2

))
.

The function 2x sin
(

1
x2+y2

)
is bounded in any disc centered at (0, 0),

while
2x

x2 + y2
cos

(
1

x2 + y2

)
is unbounded in any such disc.

(To see this, consider (x, y) =
(

1√
nπ
, 0
)

for n a large positive integer.)

Thus fx is unbounded in any disc around (0, 0).

(8) fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0
sin

1

h
does not exist. Similarly fy(0, 0) does

not exist. Clearly, f is continuous at (0, 0).

(9) (i) Let ~v = (a, b) be any unit vector in R2. We have

(D~vf) (0, 0) = lim
h→0

f(h~v)

h
= lim

h→0

f(ha, hb)

h
= lim

h→0

h2ab
(
a2−b2
a2+b2

)
h

= 0.

Therefore (D~vf) (0, 0) exists and equals 0 for every unity vector ~v ∈ R2.

For considering differentiability, note that fx(0, 0) = (Dîf) (0, 0) = 0 =

fy(0, 0) =
(
Dĵf

)
(0, 0). We have then

lim
(h,k)→(0,0)

|f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)|√
h2 + k2

= lim
(h,k)→(0,0)

|hk(h2 − k2)|
(h2 + k2)3/2

= 0

since

0 ≤ |hk(h2 − k2)|
(h2 + k2)3/2

≤ |hk|√
h2 + k2

h2 + k2

h2 + k2
≤
√
h2 + k2

√
h2 + k2

√
h2 + k2

=
√
h2 + k2.

Thus f is differentiable at (0, 0).

(ii) Note that, for any unit vector ~v = (a, b) in R2, we have

D~vf(0, 0) = lim
h→0

h3a3

h(h2(a2 + b2))
= lim

h→0

a3

(a2 + b2)
=

a3

(a2 + b2)
.

To consider differentiability, note that fx(0, 0) = 1, fy(0, 0) = 0 and

lim
(h,k)→(0,0)

|f(h, k)− h× 1− k × 0|√
h2 + k2

= lim
(h,k)→(0,0)

|h3/(h2 + k2)− h|√
h2 + k2
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= lim
(h,k)→(0,0)

|hk2|
(h2 + k2)3/2

does not exist (consider, for example, k = mh). Hence f is not differen-

tiable at (0, 0).

(iii) For any unit vector ~v ∈ R2, one has

(D~vf) (0, 0) = lim
h→0

h2(a2 + b2) sin
[

1
h2(a2+b2)

]
h

= 0.

Also,

lim
(h,k)→(0,0)

∣∣∣(h2 + k2) sin
[

1
(h2+k2)

]∣∣∣
√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 sin

(
1

h2 + k2

)
= 0;

therefore f is differentiable at (0, 0).

(10) f(0, 0) = 0, |f(x, y)| ≤
√

x2 + y2 =⇒ f is continuous at (0, 0).

Let ~v be a unit vector in R2.

For ~v = (a, b), with b 6= 0, one has

(D~v) f(0, 0) = lim
h→0

1

h

hb

|hb|
√
h2a2 + h2b2 =

(
√
a2 + b2)b

|b|
.

If ~v = (a, 0), then (D~vf) (0, 0) = 0. Hence (D~vf) (0, 0) exists for every unit

vector ~v ∈ R2. Further,

fx(0, 0) = 0, fy(0, 0) = 1,

and

lim
(h,k)→(0,0)

|f(h, k)− 0− h× 0− k × 1|√
h2 + k2

= lim
(h,k)→(0,0)

∣∣∣ k|k|√h2 + k2 − k
∣∣∣

√
h2 + k2

= lim
(h,k)→(0,0)

∣∣∣∣ k|k| − k√
h2 + k2

∣∣∣∣
does not exist (consider, for example, k = mh) so that f is not differentiable

at (0, 0).
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