Solutions to Tutorial Sheet 7

(1) $(\nabla F)(1, -1, 3) = (\frac{\partial F}{\partial x}(1, -1, 3), \frac{\partial F}{\partial y}(1, -1, 3), \frac{\partial F}{\partial z}(1, -1, 3)) = 4\mathbf{j} + 6\mathbf{k}.$ The **tangent plane** to the surface $F(x, y, z) = 7$ at the point $(1, -1, 3)$ is given by $0 \times (x-1) + 4 \times (y+1) + 6 \times (z-3) = 0$, i.e., $2y + 3z = 7$. The **normal line** to the surface $F(x, y, z) = 7$ at the point $(1, -1, 3)$ is given by $x = 1$, $3y - 2z + 9 = 0$. $(2) \, u =$ $\frac{(2, 2, 1)}{\sqrt{2}}$ $2^2 + 2^2 + 1^2$ = $\sqrt{2}$ 3 , 2 3 , 1 3 \setminus = 2 3 $(i + j) + \frac{1}{2}$ 3 k and $(\nabla F)((2, 2, 1)) = 3\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}.$ Therefore, $(D_{\mathbf{u}}F)(2,2,1) = (\nabla F)(2,2,1) \cdot \mathbf{u} = \frac{6}{2}$ 3 $-\frac{10}{2}$ 3 $+$ 2 3 $=-\frac{2}{2}$ 3 . (3) Given that $\sin (x + y) + \sin (y + z) = 1$ (with $\cos(y + z) \neq 0$). (The student may assume that z is a sufficiently smooth function of x and y). Differentiating w.r.t. x while keeping y fixed, we get $\cos(x+y) + \cos(y+z)\frac{\partial z}{\partial x} = 0.$ (*) Similarly, differentiating w.r.t.y while keping x fixed, we get

 $\cos(x+y)+\cos(y+z)\left(1+\frac{\partial z}{\partial y}\right)$ $= 0.$ (**)

Differentiating $(*)$ w.r.t y we have

 $-\sin(x+y) - \sin(y+z)\left(1+\frac{\partial z}{\partial y}\right)\frac{\partial z}{\partial x} + \cos(y+z)\frac{\partial^2 z}{\partial x \partial y} = 0.$

Thus, using $(*)$ and $(**)$, we have

$$
\frac{\partial^2 z}{\partial x \partial y}
$$
\n
$$
= \frac{1}{\cos(y+z)} \left[\sin(x+y) + \sin(y+z) \cdot \left(1 + \frac{\partial z}{\partial y} \right) \frac{\partial z}{\partial x} \right]
$$
\n
$$
= \frac{1}{\cos(y+z)} \left[\sin(x+y) + \sin(y+z) \left(-\frac{\cos(x+y)}{\cos(y+z)} \right) \left(-\frac{\cos(x+y)}{\cos(y+z)} \right) \right]
$$
\n
$$
= \frac{\sin(x+y)}{\cos(y+z)} + \tan(y+z) \frac{\cos^2(x+y)}{\cos^2(y+z)}.
$$

(4) We have

$$
f_{xy}(0,0) = \lim_{k \to 0} \frac{f_x(0,k) - f_x(0,0)}{k},
$$

where (noting that $k\neq 0)$

$$
f_x(0,k) = \lim_{h \to 0} \frac{f(h,k) - f(0,k)}{h} = -k \text{ and } f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0.
$$

Therefore,

$$
f_{xy}(0,0) = \lim_{k \to 0} \frac{-k-0}{k} = -1
$$
; similarly $f_{yx}(0,0) = 1$.

Thus

$$
f_{xy}(0,0) \neq f_{yx}(0,0).
$$

By directly computing f_{xy}, f_{yx} for $(x, y) \neq (0, 0)$, one observes that these are not continuous at $(0, 0)$.

(In the following $H_f(a, b)$ denotes the **Hessian matrix** of a sufficiently smooth function f at the point (a, b) .

(5) (i) We have

$$
f_x(-1,2) = 0 = f_y(-1,2); \quad H_f(-1,2) = \begin{bmatrix} 12 & 0 \\ 0 & 48 \end{bmatrix}
$$

 $D = 12 \times 48 > 0$, $f_{xx}(-1,2) = 12 > 0 \Rightarrow (-1,2)$ is a point of local minimum of f.

.

(ii) We have

$$
f_x(0,0) = 0 = f_y(0,0); H_f(0,0) = \begin{bmatrix} 6 & -2 \\ & \\ -2 & 10 \end{bmatrix}.
$$

 $D = 60 - 4 > 0$, $f_{xx}(0,0) = 6 > 0 \Rightarrow (0,0)$ is a point of local minimum of f.

(6) (i)
$$
f_x = e^{-\frac{(x^2+y^2)}{2}} (2x - x^3 + xy^2), \quad f_y = e^{-\frac{(x^2+y^2)}{2}} (-2y + y^3 - x^2y).
$$

Critical points are $(0, 0)$, $(\pm$ $(2,0), (0,\pm)$ 2).

$$
H_f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \implies (0,0) \text{ is a saddle point of } f.
$$

$$
H_f(\pm\sqrt{2},0) = \begin{bmatrix} -\frac{4}{e} & 0 \\ 0 & -\frac{4}{e} \end{bmatrix} \implies (\pm\sqrt{2},0) \text{ is a point of local maximum of } f.
$$

$$
H_f(0,\pm\sqrt{2}) = \begin{bmatrix} \frac{4}{e} & 0 \\ 0 & \frac{4}{e} \end{bmatrix} \implies (0,\pm\sqrt{2}) \text{ is a point of local minimum of } f.
$$

(ii) $f_x = 3x^2 - 3y^2$ and $f_y = -6xy$ imply that $(0, 0)$ is the only critical point of f. Now,

$$
H_f(0,0) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right].
$$

Thus, the standard derivative test fails.

However, $f(\pm \epsilon, 0) = \pm \epsilon^3$ for any ϵ so that $(0, 0)$ is a saddle point of f. (7) From $f(x, y) = (x^2 - 4x) \cos y$ $(1 \le x \le 3, -\pi/4 \le y \le \pi/4)$, we have $f_x = (2x - 4)\cos y$ and $f_y = -(x^2 - 4x)\sin y$. Thus the only critical point of f is $P = (2, 0)$; note that $f(P) = -4$. Next, $g_{\pm}(x) \equiv f(x, \pm \frac{\pi}{4})$ $\frac{\pi}{4}$) = $\frac{(x^2-4x)}{\sqrt{2}}$ (1 \leq x \leq 3) has $x=2$ as the only critical point so that we consider $P_{\pm} = (2, \pm \frac{\pi}{4})$ $\frac{\pi}{4}$); note that $f(P_{\pm}) = \frac{-4}{\sqrt{2}}$. We also need to check $g_{\pm}(1) = f(1, \pm \frac{\pi}{4})$ $(\frac{\pi}{4})$ ($\equiv f(Q_{\pm})$) and $g_{\pm}(3) = f(3, \pm \frac{\pi}{4})$ $\frac{\pi}{4})$ (\equiv $f(S_{\pm})$; note that $f(Q_{\pm}) = \frac{-3}{\sqrt{2}}$, $f(S_{\pm}) = -\frac{-3}{\sqrt{2}}$.

Next, consider
$$
h(y) \equiv f(1, y) = -3 \cos y \left(-\pi/4 \le y \le \pi/4\right)
$$
. The only critical
point of h is $y = 0$; note that $h(0) = f(1, 0) \left(\equiv f(M)\right) = -3$. $(h(\pm \pi/4))$ is just $f(Q_{\pm})$.

Finally, consider $k(y) \equiv f(3, y) = -3 \cos y \, (-\pi/4 \le y \le \pi/4)$. The only critical point of k is $y = 0$; note that $k(0) = f(3, 0)$ ($\equiv f(T)$) = -3. ($k(\pm \pi/4)$ is just $f(S_{\pm})$).

Summarizing, we have the following table:

By inspection one finds that

 $f_{\min} = -4$ is attained at $P = (2, 0)$ and

 $f_{\text{max}} = -\frac{3}{\sqrt{2}}$ $\frac{2}{2}$ at $Q_{\pm} = (1, \pm \pi/4)$ and at $S_{\pm} = (3, \pm \pi/4)$.

- (8) Consider $\bigtriangledown(T + \lambda g) = 0$, $g = 0$, where
	- $T(x, y, z) = 400xyz$ and $g(x, y, z) = x^2 + y^2 + z^2 1$. Thus one has $400yz + 2\lambda x = 0$, $400xz + 2\lambda y = 0$, $400xy + 2\lambda z = 0$, so that $400xyz = -2\lambda x^2 = -2\lambda y^2 = -2\lambda z^2.$ If $\lambda \neq 0$, then $x = \pm y$, $y = \pm z$ and $z = \pm x$; combining this with $g = 0$ one obtains $(x, y, z) = \left(\pm \frac{1}{\sqrt{2}}\right)$ $\frac{1}{3}, \pm \frac{1}{\sqrt{3}}$ $\frac{1}{3}, \pm \frac{1}{\sqrt{3}}$ 3 (with the corresponding λ being either $-200/$ √ 3 or 200/ √ 3). If $\lambda = 0$, then $yz = xz = xy = 0$; combining this with $g = 0$ one obtains $(x, y, z) = (\pm 1, 0, 0)$ or $(0, \pm 1, 0)$ or $(0, 0, \pm 1)$.

Thus we need to check T at $8 + 6 = 14$ points. The first set of eight points gives $T = \frac{400}{2\sqrt{3}}$ $\frac{400}{3\sqrt{3}}$ or $-\frac{400}{3\sqrt{3}}$ $\frac{400}{3\sqrt{3}}$, and the second set of six points gives $T=0$. Hence the highest temperature on the unit sphere is $\frac{400}{3\sqrt{3}}$.

(9) Consider

$$
\nabla f + \lambda \nabla g_1 + \mu \nabla g_2 = 0
$$
, $g_1 = 0 = g_2$, where
 $f(x, y, z) = xyz$, $g_1(x, y, z) = x + y + z - 40$, $g_2(x, y, z) = x + y - z$.

Thus one has

$$
yz + \lambda + \mu = 0, \ zx + \lambda + \mu = 0, \ xy + \lambda - \mu = 0.
$$
 (*)

Now, $g_1 = 0 = g_2$ gives $z = 20$ and the first two equalities in (*) then give $x = y$; since one has $x + y = 20$ in view of $g_2 = 0$, one is led to $x = y = 10$, $z = 20$. Then $f(10, 10, 20) = 2000$ is the maximum value of f subject to the given constraints. (That 2000 is the maximum value (and not the minimum value) of f under the given constraints can be deduced by checking the value of f at some other point satisfying the constraints such as $(x, y, z) = (5, 15, 20)$.

(10) Consider

$$
\nabla f + \lambda \nabla g_1 + \mu \nabla g_2 = 0, \quad g_1 = 0 = g_2, \text{ where}
$$

$$
f(x, y, z) = x^2 + y^2 + z^2, \quad g_1(x, y, z) = x + 2y + 3z - 6, \quad g_2(x, y, z) = x + 3y + 4z - 9.
$$

Thus one has

$$
2x + \lambda + \mu = 0 \tag{A}
$$

$$
2y + 2\lambda + 3\mu = 0\tag{B}
$$

$$
2z + 3\lambda + 4\mu = 0\tag{C}
$$

$$
x + 2y + 3z - 6 = 0 \tag{D}
$$

$$
x + 3y + 4z - 9 = 0 \tag{E}
$$

Considering $(E)-(D)$, one obtains $y+z=3$; using this and considering $(B)+(C)$ one next obtains

$$
5\lambda + 7\mu = -6\tag{F}
$$

Considering $2 \times (E) - 3 \times (D)$, one obtains $x + z = 0$; using this and considering $(A) + (C)$ one next obtains

$$
4\lambda + 5\mu = 0\tag{G}
$$

Solving (F) and (G) for λ and μ , one has

$$
\lambda = 10
$$
 and $\mu = -8$.

It follows now from (A) , (B) and (C) that

$$
x = -1
$$
, $y = 2$ and $z = 1$.

Then $f(-1, 2, 1) = 6$ is the minimum value of f subject to the given constraints. (That 6 is the *minimum* value (and not the maximum value) of f under the given constraints can be deduced by checking the value of f at some other point satisfying the constraints such as $(x, y, z) = (-3, 0, 3)$.