Tutorial Sheet No.1: Sequences

1. Using $(\epsilon \cdot n_0)$ definition prove the following:

(i)
$$
\lim_{n \to \infty} \frac{10}{n} = 0
$$

\n(ii)
$$
\lim_{n \to \infty} \frac{5}{3n+1} = 0
$$

\n(iii)
$$
\lim_{n \to \infty} \frac{n^{2/3} \sin(n!)}{n+1} = 0
$$

\n(iv)
$$
\lim_{n \to \infty} \left(\frac{n}{n+1} - \frac{n+1}{n}\right) = 0
$$

2. Show that the following limits exist and find them :

(i)
$$
\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right)
$$

\n(ii)
$$
\lim_{n \to \infty} \left(\frac{n!}{n^n} \right)
$$

\n(iii)
$$
\lim_{n \to \infty} \left(\frac{n^3 + 3n^2 + 1}{n^4 + 8n^2 + 2} \right)
$$

\n(iv)
$$
\lim_{n \to \infty} (n)^{1/n}
$$

\n(v)
$$
\lim_{n \to \infty} \left(\frac{\cos \pi \sqrt{n}}{n^2} \right)
$$

\n(vi)
$$
\lim_{n \to \infty} \left(\sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right) \right)
$$

3. Show that the following sequences are not convergent :

(i)
$$
\left\{\frac{n^2}{n+1}\right\}_{n\geq 1}
$$
 (ii) $\left\{(-1)^n \left(\frac{1}{2} - \frac{1}{n}\right)\right\}_{n\geq 1}$

4. Determine whether the sequences are increasing or decreasing :

(i)
$$
\left\{\frac{n}{n^2+1}\right\}_{n\geq 1}
$$

\n(ii)
$$
\left\{\frac{2^n 3^n}{5^{n+1}}\right\}_{n\geq 1}
$$

\n(iii)
$$
\left\{\frac{1-n}{n^2}\right\}_{n\geq 2}
$$

5. Prove that the following sequences are convergent by showing that they are monotone and bounded. Also find their limits :

(i)
$$
a_1 = 1, a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \quad \forall n \ge 1
$$

\n(ii) $a_1 = \sqrt{2}, a_{n+1} = \sqrt{2 + a_n} \quad \forall n \ge 1$
\n(iii) $a_1 = 2, a_{n+1} = 3 + \frac{a_n}{2} \quad \forall n \ge 1$

6. If $\lim_{n \to \infty} a_n = L$, find the following : $\lim_{n \to \infty} a_{n+1}$, $\lim_{n \to \infty} |a_n|$

7. If $\lim_{n\to\infty} a_n = L \neq 0$, show that there exists $n_0 \in \mathbb{N}$ such that

$$
|a_n| \ge \frac{|L|}{2} \quad \text{for all } n \ge n_0.
$$

- 8. If $a_n \ge 0$ and $\lim_{n \to \infty} a_n = 0$, show that $\lim_{n \to \infty} a_n^{1/2} = 0$. **Optional:** State and prove a corresponding result if $a_n \to L > 0$.
- 9. For given sequences $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$, prove or disprove the following :
	- (i) $\{a_nb_n\}_{n\geq 1}$ is convergent, if $\{a_n\}_{n\geq 1}$ is convergent.
	- (ii) $\{a_nb_n\}_{n\geq 1}$ is convergent, if $\{a_n\}_{n\geq 1}$ is convergent and $\{b_n\}_{n\geq 1}$ is bounded.
- 10. Show that a sequence $\{a_n\}_{n\geq 1}$ is convergent if and only if both the subsequences $\{a_{2n}\}_{n\geq 1}$ and $\{a_{2n+1}\}_{n\geq 1}$ are convergent to the same limit.

Supplement

1. A sequence $\{a_n\}_{n\geq 1}$ is said to be **Cauchy** if for any $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n - a_m| < \epsilon$ for all $m, n \ge n_0$. In other words, the elements of a Cauchy sequence come arbitrarily close to each other after some stage. One can show that every convergent sequence is also Cauchy and conversely, every Cauchy sequence in $\mathbb R$ is also conver-

gent. This is an equivalent way of stating the **Completeness property** of real numbers.)

- 2. To prove that a sequence ${a_n}_{n\geq 1}$ is convergent to L, one needs to find a real number L (not given by the sequences) and verify the required property. However the concept of 'Cauchyness' of a sequence is purely an 'intrinsic' property of the given sequence. Nonetheless a sequence of real numbers is Cauchy if and only if it is convergent.
- 3. In problem 5(i) we defined

$$
a_0 = 1
$$
, $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n}) \quad \forall n \ge 1$.

The sequence ${a_n}_{n\geq 1}$ is a monotonically decreasing sequence of rational numbers which is bounded below. However, it cannot converge to a rational (why?). This exhibits the need to enlarge the concept of numbers tional (why?). This exhibits the need to enlarge the concept of numbers
beyond rational numbers. The sequence $\{a_n\}_{n\geq 1}$ converges to $\sqrt{2}$ and its elements a_n 's are used to find rational approximation (in computing tts elements a_n 's
machines) of $\sqrt{2}$.