Tutorial Sheet No. 2: Limits, Continuity and Differentiability

- 1. Let $a, b, c \in \mathbb{R}$ with a < c < b and let $f, g : (a, b) \to \mathbb{R}$ be such that $\lim_{x \to c} f(x) = 0$. Prove or disprove the following statements.
 - (i) $\lim_{x \to c} [f(x)g(x)] = 0.$
 - (ii) $\lim_{x \to 0} [f(x)g(x)] = 0$, if g is bounded.
 - (iii) $\lim_{x \to c} [f(x)g(x)] = 0$, if $\lim_{x \to c} g(x)$ exists.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to \alpha} f(x)$ exists for $\alpha \in \mathbb{R}$. Show that

$$\lim_{h \to 0} [f(\alpha + h) - f(\alpha - h)] = 0.$$

Analyze the converse.

3. Discuss the continuity of the following functions :

(i)
$$f(x) = \sin \frac{1}{x}$$
, if $x \neq 0$ and $f(0) = 0$
(ii) $f(x) = x \sin \frac{1}{x}$, if $x \neq 0$ and $f(0) = 0$
(iii) $f(x) = \begin{cases} \frac{x}{[x]} & \text{if } 1 \leq x < 2\\ 1 & \text{if } x = 2\\ \sqrt{6-x} & \text{if } 2 \leq x \leq 3 \end{cases}$

- 4. Let f : R → R satisfy f(x + y) = f(x) + f(y) for all x, y ∈ R. If f is continuous at 0, show that f is continuous at every c ∈ R.
 (Optional) Show that the function f satisfies f(kx) = kf(x), for all k ∈ R.
- 5. Let $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable on \mathbb{R} . Is f' a continuous function?
- 6. Let $f:(a,b) \to \mathbb{R}$ be a function such that

$$|f(x+h) - f(x)| \le C|h|^{\alpha}$$

for all $x, x + h \in (a, b)$, where C is a constant and $\alpha > 1$. Show that f is differentiable on (a, b) and compute f'(x) for $x \in (a, b)$.

7. If $f:(a,b) \to \mathbb{R}$ is differentiable at $c \in (a,b)$, then show that

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c-h)}{2h}$$

exists and equals f'(c). Is the converse true ? [Hint: Consider f(x) = |x|.] 8. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy

$$f(x+y) = f(x)f(y)$$
 for all $x, y \in \mathbb{R}$.

If f is differentiable at 0, then show that f is differentiable at every $c \in \mathbb{R}$ and f'(c) = f'(0)f(c).

(**Optional**) Show that f has a derivative of every order on \mathbb{R} .

9. Using the Theorem on derivative of inverse function. Compute the derivative of

(i) $\cos^{-1} x$, -1 < x < 1. (ii) $-\cos^{-1} x$, |x| > 1.

10. Compute $\frac{dy}{dx}$, given

$$y = f\left(\frac{2x-1}{x+1}\right)$$
 and $f'(x) = \sin(x^2)$.

Optional Exercises:

- 11. Construct an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous every where and is differentiable everywhere except at 2 points.
- 12. Let $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$ Show that f is discontinuous at every $c \in \mathbb{R}$.
- 13. (Optional)

Let $g(x) = \begin{cases} x, & \text{if } x \text{ is rational,} \\ 1-x, & \text{if } x \text{ is irrational.} \end{cases}$ Show that g is continuous only at c = 1/2.

14. (Optional)

Let $f: (a,b) \to \mathbb{R}$ and $c \in (a,b)$ be such that $\lim_{x \to c} f(x) > \alpha$. Prove that there exists some $\delta > 0$ such that

 $f(c+h) > \alpha$ for all $0 < |h| < \delta$.

(See also question 7 of Tutorial Sheet 1.

- 15. (Optional) Let $f : (a, b) \to \mathbb{R}$ and $c \in (a, b)$. Show that the following are equivalent :
 - (i) f is differentiable at c.
 - (ii) There exist $\delta > 0$ and a function $\epsilon_1 : (-\delta, \delta) \to \mathbb{R}$ such that $\lim_{h\to 0} \epsilon_1(h) = 0$ and

$$f(c+h) = f(c) + \alpha h + h\epsilon_1(h)$$
 for all $h \in (-\delta, \delta)$.

(iii) There exists $\alpha \in \mathbb{R}$ such that

$$\lim_{h \to 0} \left(\frac{|f(c+h) - f(c) - \alpha h|}{|h|} \right) = 0.$$