Tutorial Sheet No. 4: Curve Sketching, Riemann Integration

1. Sketch the following curves after locating intervals of increase/decrease, intervals of concavity upward/downward, points of local maxima/minima, points of inflection and asymptotes. How many times and approximately where does the curve cross the x-axis?

(i)
$$
y = 2x^3 + 2x^2 - 2x - 1
$$

\n(ii) $y = \frac{x^2}{x^2 + 1}$
\n(iii) $y = 1 + 12|x| - 3x^2, x \in [-2, 5]$

2. Sketch a continuous curve $y = f(x)$ having all the following properties:

$$
f(-2) = 8, f(0) = 4, f(2) = 0; f'(2) = f'(-2) = 0;
$$

$$
f'(x) > 0 \text{ for } |x| > 2, f'(x) < 0 \text{ for } |x| < 2;
$$

$$
f''(x) < 0 \text{ for } x < 0 \text{ and } f''(x) > 0 \text{ for } x > 0.
$$

- 3. Give an example of $f:(0,1) \to \mathbb{R}$ such that f is
	- (i) strictly increasing and convex.
	- (ii) strictly increasing and concave.
	- (iii) strictly decreasing and convex.
	- (iv) strictly decreasing and concave.
- 4. Let $f, g : \mathbb{R} \to \mathbb{R}$ satisfy $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \in \mathbb{R}$. Define $h(x) = f(x)g(x)$ for $x \in \mathbb{R}$. Which of the following statements are true? Why?
	- (i) If f and g have a local maximum at $x = c$, then so does h.
	- (ii) If f and g have a point of inflection at $x = c$, then so does h.
- 5. Let $f(x) = 1$ if $x \in [0,1]$ and $f(x) = 2$ if $x \in (1,2]$. Show from the first principles that f is Riemann integrable on [0, 2] and find \int_0^2 $\boldsymbol{0}$ $f(x)dx$.
- 6. (a) Let $f : [a, b] \rightarrow \mathbb{R}$ be Riemann integrable and $f(x) \geq 0$ for all $x \in [a, b]$. Show that \int^b a $f(x)dx \geq 0$. Further, if f is continuous and $\int_0^b f(x)dx = 0$, show that $f(x) = 0$ for all $x \in [a, b]$.
	- (b) Give an example of a Riemann integrable function on $[a, b]$ such that $f(x) \geq 0$ for all $x \in [a, b]$ and \int^b a $f(x)dx = 0$, but $f(x) \neq 0$ for some $x \in [a, b]$.
- 7. Evaluate $\lim_{n\to\infty} S_n$ by showing that S_n is an approximate Riemann sum for a suitable function over a suitable interval:
	- (i) $S_n = \frac{1}{5}$ $n^{5/2}$ $\sum_{n=1}^{\infty}$ $i=1$ $i^{3/2}$

(ii)
$$
S_n = \sum_{i=1}^n \frac{n}{i^2 + n^2}
$$

\n(iii) $S_n = \sum_{i=1}^n \frac{1}{\sqrt{in + n^2}}$
\n(iv) $S_n = \frac{1}{n} \sum_{i=1}^n \cos \frac{i\pi}{n}$
\n(v) $S_n = \frac{1}{n} \left\{ \sum_{i=1}^n \left(\frac{i}{n}\right) + \sum_{i=n+1}^{2n} \left(\frac{i}{n}\right)^{3/2} + \sum_{i=2n+1}^{3n} \left(\frac{i}{n}\right)^2 \right\}$
\nCompute

8. Compute

(a)
$$
\frac{d^2y}{dx^2}
$$
, if $x = \int_0^y \frac{dt}{\sqrt{1+t^2}}$
\n(b)
$$
\frac{dF}{dx}
$$
, if for $x \in \mathbb{R}$ (i) $F(x) = \int_1^{2x} \cos(t^2)dt$ (ii) $F(x) = \int_0^{x^2} \cos(t)dt$.

9. Let p be a real number and let f be a continuous function on $\mathbb R$ that satisfies the equation $f(x+p) = f(x)$ for all $x \in \mathbb{R}$. Show that the integral \int^{a+p} a $f(t)dt$ has the same value for every real number a. (Hint : Consider $F(a) = \int^{a+p}$ a $f(t)dt, a \in \mathbb{R}$.)

10. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $\lambda \in \mathbb{R}$, $\lambda \neq 0$. For $x \in \mathbb{R}$, let

$$
g(x) = \frac{1}{\lambda} \int_0^x f(t) \sin \lambda (x - t) dt.
$$

Show that $g''(x) + \lambda^2 g(x) = f(x)$ for all $x \in \mathbb{R}$ and $g(0) = 0 = g'(0)$.