2.14. Tutorial Sheet No.13: Divergence theorem and applications

(1) Verify the Divergence Theorem for

$$
\mathbf{F}(x, y, z) = xy^2 \mathbf{i} + yz^2 \mathbf{j} + zx^2 \mathbf{k}
$$

 $s_{\rm eff}$ sphere also with the outward unit normal on the base being k . The base being k

for the region

 $R: y^2 + z^2 \leq x^2; 0 \leq x \leq 4.$

(2) Verify the Divergence Theorem for

$$
\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}
$$

for the region in the first octant bounded by the plane

$$
\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1
$$

(3) Let R be a region bounded by a piecewise smooth closed surface S with outward unit normal

$$
\mathbf{n} = n_x \mathbf{i} + n_y \mathbf{j} + n_z \mathbf{k}.
$$

Let $u, v : R \to \mathbb{R}$ be continuously differentiable. Show that

$$
\iiint_R u \frac{\partial v}{\partial x} dV = -\iiint_R v \frac{\partial u}{\partial x} dV + \int_{\partial R} u v n_x dS.
$$

[Hint: Consider $\mathbf{F} = u v \mathbf{i}$.]

(4) Suppose a scalar field ϕ , which is never zero has the properties

$$
\|\nabla \phi\|^2 = 4\phi \text{ and } \nabla \cdot (\phi \nabla \phi) = 10\phi.
$$

Evaluate \int S $\partial \phi$ $\frac{\partial \varphi}{\partial n}$ dS, where S is the surface of the unit sphere.

(5) Let V be the volume of a region bounded by a closed surface S and $\mathbf{n} = (n_x, n_y, n_z)$ be its outer unit normal. Prove that

$$
V = \iint_{S} x n_x dS = \iint_{S} y n_y dS = \iint_{S} z n_z dS
$$

- (6) Compute $\iint (x^2 dy \wedge dz + y^2 dz \wedge dx + z^2 dx \wedge dy)$, where S is the surface of the cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- (7) Compute \int S $yzdy \wedge dz + zxdz \wedge dx + xydx \wedge dy$, where S is the unit sphere.
- (8) Let $\mathbf{u} = -x^3\mathbf{i} + (y^3 + 3z^2\sin z)\mathbf{j} + (e^y\sin z + x^4)\mathbf{k}$ and S be the portion of the sphere $x^2 + y^2 + z^2 = 1$ with $z \ge \frac{1}{2}$ $\frac{1}{2}$ and **n** is the unit normal with positive z-component. Use Divergence theorem to compute \int $(\nabla \times \mathbf{u}) \cdot \mathbf{n} dS$.
- S (9) Let p denote the distance from the origin to the tangent plane at the point (x, y, z) to the ellipsoid $\frac{x^2}{2}$ a^2 , b^2 c $\frac{2}{2} + \frac{y^2}{h^2}$ $rac{2}{2} + \frac{z^2}{c^2}$ \overline{a} = 1. Prove that (a) \int S $p dS = 4\pi abc.$ (b) \int S 1 $\frac{1}{p} dS = \frac{4\pi}{3abc} (b^2c^2 + c^2a^2 + a^2b^2).$
- (10) Interpret Green's theorem as a divergence theorem in the plane.