
PH111: Tutorial Sheet 5

Solutions

This tutorial sheet contains problems related to the central force motion

1. In the lectures, we argued that the e�ective potential for the central force problem is

Veff (r) =
L2

2µr2
+ V (r),

where V (r) is the potential energy corresponding to the central force, and L is the
angular momentum. Consider the case of gravitational motion so that V (r) = −C

r
,

with C > 0. Plot the e�ective potential as a function of r, and argue based upon the
plot that for E ≥ 0, orbits will be unbound, while for E < 0, we will obtain bound
orbits, where E is the total energy of the system.
Soln: A representative plot of Veff (r) =

L2

2µr2
+ V (r), where V (r) = −Gm1m2

r
= −C

r
,

with C > 0 is presented below. Plots of −C
r
and L2

2µr2
, are also presented in the same

�gure. Note that in the �gure, what we call Veff , has been denoted as Ueff .

Two important general points can be made:

(a) centrifugal potential energy L2

2µr2
is always a positive quantity, while the gravi-

tational potential energy −C
r
is always a negative quantity. Therefore, e�ective

potential energy Veff (r), which is a sum of both, has both positive and negative
values, and has a minimum with respect to r.

(b) For any value of total energy, the particle cannot be in the region where Veff (r) >
E, because then to keep total energy E = 1

2
µṙ2+Veff (r) constant, kinetic energy

1
2
µṙ2 will have to be negative, which means imaginary value of velocity ṙ. Because

of this, particle will turn back from the points r for which E = Veff (r). These
points are called �turning points�.
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Let us calculate the minimum of Veff (r)

∂Veff (r)

∂r
= − L2

µr3
+

C

r2
= 0

=⇒ rmin =
L2

µC

=⇒ V min
eff = Veff (rmin) =

L2

2µr2min

− C

rmin

=
L2

2µ

(
µ2C2

L4

)
− C

µC

L2
= −µC2

2L2

Let us consider four possible cases:
Case I, E>0: From the graph it is obvious that for this case we have only one turning
point, therefore, the motion will be unbound. We know from lectures that the orbit
here is hyperbola.
Case II, E=0: Again from the graph above it is clear that we have only one turning
point for this case, implying that the motion is unbound. From the lectures we know
that the orbit for this case is a parabola.
Case III, 0>E>V min

eff : For this case, clearly there are two turning points, and be-
cause, due to conservation of angular momentum, the motion is con�ned in a plane
for central force motion, this clearly implies a bound orbit. For planar motion, only
bound orbit with two turning points is an ellipse. Thus motion is along an elliptic
orbit.
Case IV, E=V min

eff : Clearly, here there is only one possible value of radial distance

r = rmin. Because E = 1
2
µṙ2 + Veff = V min

eff =⇒ ṙ = 0, which means that there
is no radial motion for this case. Only orbit which satis�es this condition is a circle.
Another way to approach this problem is by force considerations. If the particle is
executing circular motion, then the centripetal force is provided by the gravitational
force

µv2

r
=

C

r2

=⇒ r =
C

µv2

dividing previous equation by r2on both sides

1

r
=

C

µv2r2
=

Cµ

µ2v2r2
=

Cµ

L2

=⇒ r =
L2

Cµ
= rmin

which is the same result, as derived above. Note that we have used the value of the
orbital angular momentum to be L = µvr.

2. Suppose a satellite is moving around a planet in a circular orbit of radius r0. Due to
a collision with another object, satellite's orbit gets perturbed. Show that the radial
position of the satellite will execute simple harmonic motion with ω = L

mr20
, where L

is the initial angular momentum of the satellite.
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Soln: Because it is a small perturbation, we can Taylor expand the potential energy
of the satellite around r0 = rmin

Veff (r) = Vmin + (r − rmin)
∂Veff

∂r

∣∣∣∣
r=rmin

+
1

2

∂2Veff

∂r2

∣∣∣∣
r=rmin

+ · · ·

Noting that

∂Veff

∂r

∣∣∣∣
r=rmin

= 0

∂2Veff

∂r2

∣∣∣∣
r=rmin

=
3L2

µr4min

− 2C

r3min

=
3L2

µ

(
µ4C4

L8

)
− 2C

(
µ3C3

L6

)
=

µ3C4

L6

But above we showed C = L2

µr min
, therefore,

∂2Veff

∂r2

∣∣∣∣
r=rmin

=
µ3

L6

(
L8

µ4r4min

)
=

L2

µr4min

but rmin = r0

Veff (r) ≈ Vmin +
L2

2µr40
(r − r0)

2

Radial equation of motion of the perturbed orbit

µr̈ = −∂Veff (r)

∂r
= − L2

µr40
(r − r0)

De�ne x = r − r0, we obtain from above

ẍ+ ω2x,

where ω = L
µr20

. Given the fact that µ = mM
m+M

≈ m, because m ≪ M , where M is

the mass of the planet. Thus ω = L
mr20

, and equation above denotes simple harmonic

motion about r = r0, with frequency ω.

3. In this problem we will explore an alternative way of obtaining the equation of the
curve corresponding to the central force orbits.

(a) Make a change of variable u = 1
r
and show that the u − θ di�erential equation

for a central force F(r) = f(r)r̂ is

d2u

dθ2
+ u = − µ

u2L2
f(

1

u
)

Soln: The radial equation is

µ
d2r

dt2
− µrθ̇2 = f(r), (1)
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while the angular equation leads to

µr2θ̇ = L (2)

θ̇ =
L

µr2
(3)

Substituting Eq. 3 in Eq. 1, we have

µ
d2r

dt2
− L2

µr3
= f(r) (4)

Substitute r = 1
u
in Eq. 4

µ
d2

dt2

(
1

u

)
− L2u3

µ
= f(

1

u
) (5)

Now,
d

dt

(
1

u

)
= − 1

u2

du

dt
= − 1

u2

du

dθ

dθ

dt
(6)

Using Eq. 3 in Eq. 6, we obtain

d

dt

(
1

u

)
= − 1

u2

du

dθ

L

µr2
= −Lu2

µu2

du

dθ
= −L

µ

du

dθ
(7)

Similarly
d2

dt2

(
1

u

)
=

d

dt

{
d

dt

(
1

u

)}
=

d

dθ

{
d

dt

(
1

u

)}
dθ

dt
(8)

Using Eqs. 3 and 7 in 8, we have

d2

dt2

(
1

u

)
=

d

dθ

{
−L

µ

du

dθ

}
Lu2

µ
= −L2u2

µ2

d2u

dθ2
(9)

Substituting Eq 9 in Eq. 5, we obtain

−L2u2

µ

d2u

dθ2
− L2u3

µ
= f(

1

u
)

=⇒ d2u

dθ2
+ u = − µ

L2u2
f(

1

u
)

(b) Integrate this di�erential equation for the case of gravitational force (f(r) = − C
r2
),

and show that it leads to the same orbit as obtained in the lectures

r =
r0

1− ϵ cos θ

Soln: For gravitational force f(u) = −Cu2, so that

d2u

dθ2
+ u =

µC

L2
=

1

r0
.
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De�ne u′ = u− 1
r0
, so that

d2u′

dθ2
+ u′ = 0

Implies

u′(θ) = A sin θ +B cos θ =
1

F
cos(θ − θ0)

=⇒ 1

r
− 1

r0
=

1

F
cos(θ − θ0)

1

r
=

1

r0
+

1

F
cos(θ − θ0),

where F is a constant with dimensions of length. With suitable choice of θ0, this
equation can be put in the form

r =
r0

1− ϵ cos θ

4. A particle of mass m is moving under the in�uence of a central force F(r) = − C
r3
r̂,

with C > 0. Find the nonzero values of angular momentum L for which the particle
will move in a circular orbit.
Soln: For this, the potential energy can be obtained as

V (r) = −
∫ r

∞
F (r′)dr′ = C

∫ r

∞

dr′

r′3
= − C

2r2

∣∣∣∣r
∞

= − C

2r2
.

The e�ective potential energy for this case

Veff (r) =
L2

2µr2
− C

2r2
.

We know that for the circular orbit, the total energy must be equal to the minimum
of the e�ective potential energy, which can be found by

∂Veff (r)

∂r
= − L2

µr3
+

C

r3
= 0

=⇒ L =
√
µC.

Thus, if the system has this angular momentum, circular orbit of any radius is possible.

5. A geostationary orbit is one in which a satellite moves in a circular orbit at the given
height in the equatorial plane, so that its angular velocity of rotation around earth is
same as earth's angular velocity, thereby, making it look stationary when seen from a
point on equator. Assuming that the earth's rotational velocity, and radius, respec-
tively, are Ωe =

2π
86400

rad/s, andRe = 6400 km, calculate the altitude of the satellite,
and its orbital velocity.
Soln: The radius of the circular orbit is obtained by the force condition

GMem

r2
=

mv2

r

=⇒ r =
GMe

v2

5



For geostationary satellite v = Ωer, therefore,

r =
GMe

Ω2
er

2

=⇒ r =

(
GMe

Ω2
e

)1/3

But r = h+Re, where h is the needed altitude, and Re is the radius of the earth, and
GMe = gR2

e, therefore

h =

(
gR2

e

Ω2
e

)1/3

−Re.

Using the values g = 9.8 m/s2, Re = 6.4 × 106 m, and Ωe = 2π
86400

s−1, we obtain
h ≈ 35850 km. And orbital speed of the satellite v = rΩe = (35850 + 6400) × 106 ×
2π

86400
= 3070m/s

6. A space company wants to launch a satellite of mass m = 2000 kg, in an elliptical orbit
around earth, so that the altitude of the satellite above earth at perigee is 1100 kms,
and at apogee it is 35,850 kms. Assuming that the launch takes place at the equator,
calculate: (a) energy of the satellite in the elliptical orbit, (b) energy required to launch
the satellite, (c) eccentricity of the orbit, (d) angular momentum of the satellite, and
(e) speeds of the satellite at apogee and perigee. Use the values of Re and Ωe speci�ed
in the previous problem.
Soln: (a) We showed in the lectures that for the gravitational potential energy of the
form

V (r) = −C

r
,

the energy of a mass moving in an elliptical orbit is

E = −C

A
,

where A is the major axis of the ellipse. In this case C = GMem = R2
egm, where m is

the mass of the satellite. This elliptical orbit is about earth, with earth's center as one
of its foci. Thus, A will be sum of earth's diameter, altitude at perigee, and altitude
at apogee

A = (1100 + 2× 6400 + 35, 8500)× 103 = 5× 107m.

Therefore,

Eorb = −9.8× (6.4× 106)2 × 2000

5× 107
= −1.61× 1010J

(b) The energy of the satellite just before the launch is nothing but its gravitational
potential energy at the surface of the earth, and kinetic energy due to rotation of the

6



earth at the equator

Eground = V (r) +K = −GMem

Re

+
1

2
m(ΩeRe)

2

= −mgRe +
1

2
m(ΩeRe)

2

= −2000× 9.9× 6.4× 106 + 0.5× 2000× (6.4× 106)2 × (
2π

86400
)2

= −1.25× 1011J.

Therefore, energy required to launch the satellite will be

∆E = Eorb − Eground = 1.09× 1011J

(c) We showed in the class that the radial distances from the focus corresponding to
perigee (rmin) and apogee (rmax) are given by

rmin =
r0

1 + ϵ

rmax =
r0

1− ϵ

These equations lead to

r0 = rmin(1 + ϵ) = rmax(1− ϵ)

=⇒ ϵ =
rmax − rmin

rmax + rmin

=
(35850 + 6400)− (1100 + 6400)

(35850 + 6400) + (1100 + 6400)
= 0.7

(d) To obtain the angular momentum we use the formula for eccentricity derived in
the lectures

ϵ2 = 1 +
2EorbL

2

mC2
,

which on using various values yields

L = 1.43× 1014kg-m2/s

(e) We know that at perigee and apogee the velocity of the satellite will be perpendic-
ular to the radial distance from the earth's center, thus

L = mrpvp = mrava,

where subscripts p and a denote, perigee and apogee respectively, m = 2000 kg,
rp = rmin = 1100 + 6400 = 7.5 × 106 m, ro = rmax = 35850 + 6400 = 4.225 × 107 m.
With this we obtain

va =
L

mra
= 1690m/s

vp =
L

mrp
= 9530m/s
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7. The ultimate aim of the space company of the previous problem is to put the satellite in
a geostationary orbit. Therefore, after launching it in the elliptical orbit, the company
wants to transfer it in a geostationary orbit by �ring rockets at the apogee to increase
its speed to the required one. How much change in speed is needed to put the satellite
in the geostationary orbit, and how much energy will be required to achieve that
change?
Soln: Recalling that in problem 5 we obtained that the radius of the geostationary
orbit is Rgeo = 35850 km + 6400 km = 4.225× 107 m, which is identical to the radial
distance at the apogee ro for the elliptical orbit. Thus, it is best to �re the rockets at
the apogee of the elliptical orbit, to provide it the energy needed for a geostationary
orbit. Now, energy required will be

∆E = − C

Ageo

− Eorb,

where Eorb is the energy of the elliptical orbit computed in the last problem, while Ageo

is the major axis corresponding to the geostationary orbit. But, because geostationary
orbit is a circular one, therefore, its major axis is nothing but its diameter, so that
Ageo = 2Rgeo = 8.45× 107m. Using this we obtain

∆E = 6.6× 109 J

.To compute the change in speed, we note that change in energy ∆E, changes only
the kinetic energy of the satellite because during the rocket �ring, the location of the
satellite does not change, and hence, it potential energy remains constant. Thus, if vf
is the �nal speed of the satellite after the rocket is �red, we have

1

2
mv2f −

1

2
mv2a = ∆E = 6.6× 109

=⇒ vf =

√
2∆E +mv2a

m

Above va is the speed of the satellite at the apogee, calculated in the previous problem.
Using values of various quantities, we obtain the required change in speed

∆v = vf − va =

√
2× 6.6× 109 + 2000× (1690)2

2000
− 1690

= 3070− 1690 = 1110m/s

8


