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Part I - Classical Physics
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Basics

These are the basic ideas covered in the first chapter of the course.
I think you have done most of this during JEE quite rigorously so I won’t recap them formally, but let me know if there is
something you have a doubt in.

Vectors:

Vector addition, dot and cross products.

Cartesian Coordinate System:

Identifying the basis vectors and how they are evaluated in dot and
cross products.
Position vector and infinitesimal displacement vector.

Plane Polar Coordinate System

Understanding the relation between this and the Cartesian system.
Geometrically understanding the transformation equation.
Note that in this system, the basis vectors keep changing based on your
location, which does not happen in Cartesian.
If you were moving on a circle, your position vector would be rr̂
throughout. Isn’t this odd, you’re moving around but your position
vector stays the same?
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Kinematics

Again, we look at things in Cartesian as well as Plane Polar.

In Cartesian, it’s the most basic equations of kinematics (who is whose derivative
or integral) coupled with basic math, and you have your equations of motion.

In plane polar, things might become a little bit more complex. To start with, if we
try finding dr̂

dt , we have to first convert to Cartesian, and then differentiate.

This is done so that the basis vectors are fixed in time and we don’t have to
differentiate that as well.

r = r r̂

v = vr r̂ + vθ θ̂

where vr is radial velocity = ṙ and vθ is tangential velocity = r θ̇

Consider motion on a circle, motion from smaller circles to larger circles, and

random motion as well maybe. See if you’re able to somewhat grasp what these

quantities look like in those situations.
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The ugly cousin of ẍ

We have figured out what velocity and position look like in both systems.
Naturally, we move on to acceleration now. Cartesian is simple, so Plane Polar is
where go to again.

v = ṙ r̂ + r θ̇θ̂

a = d
dt (ṙ r̂ + r θ̇θ̂)

(product rule time)

a = r̈ r̂ + 2ṙ θ̇θ̂ + r θ̈θ̂ + r θ̇ d θ̂
dt

Find dθ̂
dt

using the hint I gave you earlier. That should yield:

a = (r̈ − r θ̇2)r̂ + (2ṙ θ̇ + r θ̈)θ̂

And we’re done!

Agnipratim Nag and Kandarp Solanki PH111 Endsem TSC April 14, 2023 5 / 43



Breaking it down

Each component has a meaning of its own.

r̈ : Simple radial acceleration - when you acceleration along the radial
direction only, this term will account for that.

r θ̇2: Centripetal acceleration - when you’re undergoing uniform circular
motion, the net force on you must be the centripetal force, which acts
radially inwards.

Note that I am isolating cases where only that term shows up, and the rest are zero

so that you are able to understand them individually. In more realistic situations,

things are more complicated and multiple accelerations are present together.

r θ̈: Angular acceleration - when you move on a circle, and your ω is
increasing constantly at some rate, this term captures that.

2ṙ θ̇: Coriolis acceleration - a fake acceleration which comes into play when
we are sitting in rotating coordinate systems. To gather some intuition for
now, you can watch this.
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Inertial frames

See if you agree with and understand all the points below about inertial
frames of reference.

An inertial frame of reference S’ is called so with respect to another
frame S, when it is moving at a constant velocity with respect to S.

The acceleration a and a’ of the body as seen from frames S and S’
are equal.

Newton’s Second Law is unchanged in both frames.

Position vectors of an object in both frames differ by the position
vector of the origin of S’ in frame S.
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Non-inertial frames

What is a non-inertial frame? A frame S’ is called so when it is moving with
non-zero acceleration with respect to a frame S.

In non-inertial frames, we encounter our first hurdle when the acceleration a
and a’ are not the same, unlike in inertial frames.

To handle this, we introduce a pseudoforce which is a ”fake force” that
”seems to be” acting on the body when we observe it in the accelerating
frame.

Recall the pendulum in a car example done in class. Notice how the
introduction of the pseudoforce in the accelerating frame is what ensured
Newton’s Second Law holds. Make sure you understand that example
completely and ask if anything is unclear.
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Translational Motion

Move an object 30m along the X axis, and then 40m along the Y axis. Mark its
position. Now bring it back to the origin. This time, move it 40m along the Y
axis first, and then 30m along the X axis. Is it at the same position?

Yes! This is because translation transformations commute.

What? Transformation? Commute? These are some nice new terms related to

MA 106, which are very relevant to PH 111.
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MA 106 detour

The state of the object is represented as a 3-vector of its spatial coordinates. The
way this state changes under operations such as rotation and translation is
captured by linear algebra in a very neat way. We multiply the state with some
3x3 matrix, to get its new state and this is what we call a transformation.

Good so far?

Two transformations are said to commute if the order in which they take place
does not matter. This can be rephrased as, if A and B are the two transformation
matrices, then AB and BA are one and the same!

Exercise: Figure out what a translation matrix along X and Y look like and check
that they commute.
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Angular Motion

Now, we look at the angular side of things. The transformation matrices here are
ones that you might be familiar with.

Rx(θ) =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ


Ry (θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ


Rz(θ) =

cosθ −sinθ 0
sinθ cosθ 0
0 0 1


Do they commute? No. Do they commute if θ was very small? Yes!
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Angular Motion

To examine this, we consider first order approximations.
Substitute sinθ as θ and cosθ as 1. (Second order terms neglected)

Rx(θx) =

1 0 0
0 1 −θx
0 θx 1


Ry (θy ) =

 1 0 θy
0 1 0

−θy 0 1


What is the difference between RxRy and RyRx? If they are to be the same, we

must hope that it is zero. On evaluating we get,

RxRy − RyRx =

 0 −θxθy 0
θxθy 0 0
0 0 0


which approximates to zero, since we neglect second order terms.
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ω

Moving on, we look at angular velocity.

Note that ω is defined in terms of change in infinitesimal angular rotation
over change in time and hence, a body having ω as ωx î + ωy ĵ and ω as
ωy ĵ + ωx î have the same angular velocity.

You have also learnt that the rate of change of a rotating vector can be
expressed as:

dA
dt = ω × A

This forms the basis for how we examine motion in rotating frames since a
new piece of the puzzle is that our basis vectors now keep rotating with
time, which we characterise using the above relation.
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Rotating frames

The coordinates of a body can be observed from an inertial frame as well
as a rotating frame. In the rotating frame, the basis is î ′, ĵ ′, k̂ ′, whereas in
the inertial frame it is î , ĵ , k̂. Note that the first set is changing with time
whereas the second is not.

A = Ax î + Ay ĵ + Az k̂ = A′
x î

′ + A′
y ĵ

′ + A′
z k̂

′

On finding the derivative of A in the rotating frame, we account for the
changing basis using the relation given earlier. This helps us arrive at:

dA
dt (inertial)

= dA
dt (rotational)

+ (Ω × A)

The LHS is the rate of change of A as seen from the inertial frame. The
RHS is the same but from the rotational frame plus an extra term that
accounts for the fact that the other frame is rotating. It would just vanish
if Ω - the angular velocity of the frame, were zero.

Does everything till here make sense?
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Plugging in

Substituting A as the position vector r, yields:

vinertial = vrotational + Ω × r

where vinertial is the observed velocity in the inertial frame and vrotational is the
observed velocity in the rotating frame, differing by the same term I told you
about earlier.

Now, substitute A as vinertial . Keep in mind that Ω is constant and carry out the
differentiation. You get:

ainertial = arotational + (2Ω × vrotational)− (Ω ×(Ω × r))

In the above equation, some familiar terms pop up. The second term is our good
friend, Coriolis Acceleration and the third is its sibling Centrifugal Acceleration.

Both are ”fake” accelerations which seem to come into play when motion is
observed from a rotating frame. They can be calculated by simply plugging in the
required vectors into the given formula.
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Central forces

Some forces such as gravity and electrostatic attraction or repulsion are
something we come across quite often. An interesting thing that is common to
both is that they are both central forces.

What does that mean? It means that they are forces that are directed towards a
’center’ and the value of the force depends only on the distance from the center.

Our understanding of these forces helps us put together important relations about
angular momentum and energy of a particle which experiences such forces.

Additionally, we are able to apply this to astronomy! These equations help us

re-derive Kepler’s laws of planetary motion from scratch which is something we’ll

take a look at soon.
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Center of Mass and Reduced Mass

To observe the ’central’ nature of these forces, we first convert our two-body
scenario into a one-body scenario using a change of coordinates. Define:

The relative coordinate r = r1 - r2

The position coordinate of the center of mass R = m1r1+m2r2
m1+m2

We know straightaway that the COM does not experience acceleration. Why?
This is because there is no external force acting on the two body system.
Therefore, R̈ = 0

On calculating r̈ , we observe that it goes according to the equation µr̈ = f (r)r̂ .
The µ here is the ’reduced mass’ of the system which is m1m2

m1+m2
.

This idea helps us now observe the same physical system with the COM at the
centre, and the reduced mass rotating around it.
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A (very low resolution) picture
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Angular Momentum

As one would expect, there is no torque acting on this system (why?) and hence,
angular momentum is conserved.
The expression for angular momentum for our reduced mass case is µr2θ̇ - is the
same as what we would have obtained in the original situation! - try this out.

We define a new quantity areal velocity, which is the amount of area dA swept
by the reduced mass with respect to the center in some time dt. The expression
for areal velocity is L

2µ - also a constant.
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Energy

The kinetic energy of the reduced mass is given by the usual expression - a little
due to radial velocity and some more due to tangential velocity.

K = 1
2µṙ

2 + 1
2µr

2θ̇2

The potential energy is what varies across different physical situations. We know
the exact form of V(r) when it comes to things such as gravity and electrostatics.

Since the only force at play here is a conservative one, we know that total energy
remains conserved. This allows us to form a differential equation.

E = 1
2µṙ

2 + 1
2µr

2θ̇2 + V(r)

ṙ2 = 2
µ (E − V (r)− 1

2µr
2θ̇2)

dr
dt =

√
2
µ (E − V (r)− 1

2µr
2θ̇2)

Working these expressions out, gives us the equations of motion along with the

knowledge that L is conserved.
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Substituting V(r)

In gravitational systems, we know that the exact form of V(r) is −GMm
r

On putting this in our differential equation, and doing a lot of math (which has
been done in the lecture slides), we end up with the following polar equation of
motion.

r = r0
1+ϵcosθ

ϵ =
√
1 + 2EL2

µC 2

E, L and µ have their usual meanings while C is GMm.
Different values of ϵ (and hence, E) yield different trajectories.

Kepler’s Third Law:

The time period of a planet in an elliptical orbit is proportional to A3/2, where A

is the major axis of the orbit.
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What trajectories?

ϵ = 1; E = 0: Parabola!

ϵ > 1; E > 0: Hyperbola!

ϵ = 0; E < 0: Circle!

0 < ϵ < 1; E < 0: Ellipse!

Note how E < 0 implies that the orbit is bound and E > 0 implies that the
orbit is unbound. Can you guess why this is?

If a body has total energy > 0, it is allowed to run away to infinity, where
potential energy goes to 0, and its kinetic energy equals its total energy,
which should be a positive quantity. A negative total energy would not
allow this.

Examples of bound orbits are our usual planetary orbits and unbound
orbits include those of stray comets and asteroids zipping through space.
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Part II - Special Theory of Relativity
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Bending our braincells to the fullest

Now that we are done with classical mechanics, we move onto a side of
physics that is quite new to you, and also might be very challenging -
relativistic mechanics.

Special Relativity explains phenomena when objects move at speeds of the
order of the speed of light such as length contraction, time dilation and
some even crazier things.

I have an entire page dedicated to SR, so be sure to go through it if you
need additional resources. The course was PH207 back in my 3rd
semester. The link is here.

The most helpful resource for doing well in this part of the course would
be Griffiths, which I have linked on my page. Be sure to make good use of
that textbook because it is a goldmine!
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The problem with Newtonian Mechanics

Somewhere around the early 1900’s, people began to notice some issues with
Newton’s Laws of Motion.

The Lorentz force given by q(E⃗ + v⃗ × B⃗) would be different on moving from
one inertial frame to another, even though there is no pseudoforce. How is
this possible?

The speed of light c, which is supposedly a constant ( 1√
µ0ϵ0

) would also

change on moving from one frame to another. Is there a ’special frame’,
such that it is the only frame where light has speed c?

Note that the coordinate transformation used here is the typical r’ = r - vt and
t’ = t. These have a nickname - the Galilean Transformations.

Do you see how we have mentioned a transform for time as well? That is because

in relativity, time is one of the dependent variables as well, and the state of the

object is defined not in space, but in space-time!
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The Michelson-Morley Experiment

This experiment was aimed at checking if there was a ’preferred frame’
where light moved at its true speed c. In all other frames, you would think
that it moved at a different speed.

They used the interference of light to create an fringe pattern, much like
you studied in Wave Optics in JEE. The only modification that they made
was, they now did it in different orientations such that, if there was an
ether, the ”ether wind” would change the effective speed of light.

However, no such effect was found and it was understood that light does
not obey Galilean Transformations and physics needed some fixing.

You can find a detailed presentation here!
Make sure that you understand the motivation, reasoning and conclusion
of the experiment completely.
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Einstein’s Postulates and Lorentz Transformations

Einstein embarked on a journey to derive the math behind Relativity. To do this,
he first fixed two postulates.

All frames are equivalent. There is no such thing as a ’preferred frame’.

The speed of light is the same in all reference frames.

A more implicit assumption: Space and time are homogeneous and isotropic.
This means that space and time intervals are the same within a particular
frame irrespective of where they are measured. (This implied that the ’new’
transformations would be a linear relation between r,t and r’,t’).

Some clever math later, he arrived at:
(The derivation is in my notes on the PH207 page, if you’re interested.)

ct ′

x ′

y ′

z ′

 =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


where β = v

c
where v is the velocity with which the frame S’ is moving with respect to S

and γ = 1√
1−β2

. For simplicity, we only consider relative motion along X.
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Consequences

These equations are what allow us to examine some of the most striking
phenomena associated with Special Relativity.

Length contraction

Time dilation

Synchronisation and simultaneity

Let’s define some terms first:

Proper Length: Length of an object in a frame where it is at rest.

Proper Time: Along the same lines, proper time is the time
measured by a clock in the frame where the clock is at rest.
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Length Contraction

Say we have two frames S and S′ moving at relative velocity v. Say, you’re trying
to measure the length of a rod oriented along the X axis, whose front has position
vector (in space-time) (r⃗1, t1) and back has position vector (r⃗2, t2).

To find it’s length as observed in the frame S’, we simply subtract the x
coordinates of its front and back as seen from S’. We set t1 = t2 here.

Why? We measure the length of the object at the same time and study only the
change in its length.

If you did not do this at the same time, and waited for say 5 seconds, one end
would have moved ahead, and you would have obtained a wrong reading.
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Length Contraction

x ′2 =
x2 − vt2√
1− v2

c2

; x ′1 =
x1 − vt1√
1− v2

c2

Taking t1 = t2 as explained, and taking β = v
c

x ′2 − x ′1 =
x2 − x1√
1− β2

⇒ ∆l =
√
1− β2∆l ′

Lengths along the direction of relative motion seem contracted!

Another fun fact for you:

Lengths perpendicular to the direction of relative motion are unchanged.

Can you prove this? Follow the same line of thought used in the previous slide.
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Time Dilation

Say (again!) we have two frames S and S′ moving at relative velocity v. Say we
observe two events at the same coordinate x′ while being in S′ frame (you could
have equally chosen the frame S)

Why? Now, we need to study how the time measured on clock (in S and S′)
changes for an event occuring at the same point.

We know that,

t =
t ′ + v

c2 x
′√

1− v2

c2

Taking t1, t2 and x′1 = x′2 as explained, and β = v
c

t2 − t1 =
t ′2 − t ′1√
1− β2

⇒ ∆t ′ =
√
1− β2∆t

Clocks in moving frame (∆t ′) i.e clocks in the frame S′ which are moving
w.r.t me (who is in S frame), tick at a slower rate!
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Synchronisation and Simultaneity

DISCLAIMER: Whenever we are defining the word ”clock”, we do not mean an
actual mechanical clock/stopwatch, rather what we are defining is independent of
any machinery, an intrinsic quantity to measure the state of a system (a special
coordinate you can say!)

t =
t ′ + v

c2 x
′√

1− v2

c2

The problem is that even if we synchronise a set of clocks in two relative frames S
and S′, even a measurement of the clocks at a later instant yields two different
values meaning that the clocks are now unsynchronised.

In other terms, they are simultaneous in their own frames viewed from the

same frame but non-simultaneous when viewed from another frame.
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Velocity Transformations

Using the known relations of x,y,z,t and x’,y’,z’,t’:

x ′ =
x − vt√
1− v2

c2

⇒ ∆x ′ =
∆x − v∆t√

1− v2

c2

t ′ =
t − v

c2
x√

1− v2

c2

⇒ ∆t ′ =
∆t − v

c2
∆x√

1− v2

c2

Divide and rearrange,

u′x =
ux − v

1− vux
c2

Similarly you can find,

u′y =
uy
√
1− β2

1− vux
c2

and u′z =
uz
√
1− β2

1− vux
c2

Can you try out finding expressions for a′x ,a
′
y ,a

′
z ?
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Inverse Velocity Transformations

Trivial, just flip everything! Replace u′x with ux and replace +v with -v
and vice versa since now we are talking S w.r.t S’
Try proving these:

If u < c in S, then u′ < c in S′

If u = c in S, then u′ = c in S′

Speed of light remains same, irrespective of frame! (Einstein’s postulate
holds)

Let’s note some important outcomes from these expressions:

The velocity transformations are NOT Galilean i.e not just u±v type
but have an additional factor of 1

1± (ux or u′x )v
c2

The transformations along y and z-axes contain a factor of u′x
intrinsically although v is only along x-axis
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Doppler Effect

Consider a source in the
frame S′ moving at an angle θ′. Note that this
is WLOG since you can fix your axes arbitrarily.
The wave equation for the source in S′ frame is

cos(2π( x
′cosθ′+y ′sinθ′

λ′ − v ′t ′))

with an additional constraint v ′t ′ = vt = c .

Now,
using the transformation equations known
to us, x ′ → x , y ′ → y and t ′ → t and equating
it with the wave equation in S frame, we get:

cosθ

λ
=

cosθ′ + β

λ′ and
sinθ

λ
=

sinθ′

λ′ ; ν = ν′(1 + βcosθ′)γ

Check for cases θ = 0,π, π
2 (Note that it is θ and not θ′)

For a more natural formula, replace ν → ν′, θ → θ′andβ → −β
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4 Vectors

Time and space are entangled now and we introduce the time parameter as a
coordinate. 

x0
′

x1
′

x2
′

x3
′

 =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1



x0

x1

x2

x3


where x0 = ct | x1 = x | x2 = y | x3 = z and

x0
′
= γ(x0 − βx1) | x1′ = γ(x1 − βx0) | x2′ = x2 | x3′ = x3

What are the properties that a vector should follow:

Should have transformation capabilities (e.g rotation).1

Preserves some properties under orthogonal transformations (e.g length).

Inner products (e.g dot product) remain invariant.

1Rotations preserve length
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Metrics in spacetime

We define ∆s as a measure of length in spacetime, which is preserved under
transformations, as:

|∆s|2 = ∆x2 + ∆y2 + ∆z2 - (c∆t)2 is conserved

⇒ |∆s|2 = ∆x2 + ∆y2 + ∆z2 - (c∆t)2

= ∆x ′2 + ∆y ′2 + ∆z ′2 - (c∆t ′)2

Define ∆d2 = ∆x2 + ∆y2 + ∆z2.

|∆s|2 > 0 ⇒ |v | > c Why? Because ∆d dominates over ∆t and you can
find a reference frame where ∆t = 0. Can ∆d be zero? Think!
So, you can find a frame where the events in two frames S and S′ happen
simultaneously (∆t = 0) called spacelike.

|∆s|2 < 0 ⇒ |v | < c Why? Because ∆t dominates over ∆d and you can
find a reference frame where ∆d = 0. Can ∆t be zero? Think!
So, you can find a frame where the events in two frames S and S′ happen at
the same coordinates (∆d = 0) s.t ∆t ̸= 0 called timelike.
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Minkowski Spacetime Light Cone

The boundary of the cone is the lightlike region where x = ct.
Agnipratim Nag and Kandarp Solanki PH111 Endsem TSC April 14, 2023 38 / 43



4-Velocity

We define proper time as the time to which all observers agree. We cannot
define it as ∆s

∆t since now t is itself a component of the 4-vector. So, we
need an object that is invariant under any transformation and hence we
define proper time = ∆τ This gives u = ∆s

∆τ = (c dt
dτ ,

dr⃗
dτ )

Now, we know in the static frame, i.e where we define τ , it is related to t
in any frame as γτ = t ⇒ γdτ = dt

So, the four-velocity is given by

u =γ(c,ū)

and hence the norm is given by: ||u||2 = γ2(u2 − c2)
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4-Momentum

Given 4-velocity, defining 4-momentum (p) is a piece of cake!

p = γmo(c , ū)

Here, we define relatisvistic mass of the particle as m = γmo , so

p = m(c, ū) = (mc , p̄)

p is Lorentz invariant ⇒ p2 = p̄ · p̄−m2c2 = C = constant
We can always find a frame where the particle is at rest and hence p̄ = 0

and m = mo , so −m2
oc

2 = C

p2 = (mc)2 − (moc)
2

This 4th component of the 4-momentum is related to E as mc = E
c , giving

E = mc2

einfach unglaublich! (”just amazing” in German)
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E=mc2 contd. & relativistic Kinetic energy

p = (Ec , p̄)

Substituting it gives,

E =
√

m2
oc

4 + p2c2

Rest mass energy = Eo = moc
2

A point worth noting here is that the rest energy of the particle

E 2 − p2c2 = (moc
2)2

is a Lorentz invariant quantity.

Relativistic Kinetic Energy

The relativistic kinetic energy (K) is given by the difference of the total
energy (E) and the rest mass energy

K = E - moc
2 =

√
p2c2 +m2

oc
4 −moc

2
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Questions

Speed of light remains same in all frames of reference (c), but speed
of light in water is 3c

4 . How do you justify this fact?
Ans. How do you define c?

Draw x′ and t′ axes of S′ moving with speed v with respect to me if I
am in S frame.

x -axis

ct- axis

0 1 2 3 4 5 6
0

1

2

3

4

5

6

light ray

ct’ - axis, x = vt
O1

O1, x’ - axis. t = v
c x

Slope of light ray is 1
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Resources

Video lectures (for all those who didn’t come to class, but are
relating to Relativity relatively late :P)

PH 207 Past Papers

Textbook

Music for studying

And we’re done. We hope this recap helped you. If there are any
corrections that you feel need to be made to the slides, do let me
know. Any other feedback is welcome here. All the best for the exam!
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https://www.youtube.com/watch?v=FWXGxM4INHE&list=PLJeM1jvA1WDMjtcYPluGj5QfOkzN5XA91
https://drive.google.com/drive/folders/12yPsqmPLddOgCHbN-3HBDGZEMHnhtdYI
https://drive.google.com/file/d/1tkXwLqZNOwRa5od0MGShfujHEM6v6-w3/view?usp=sharing
https://www.youtube.com/live/jfKfPfyJRdk?feature=share
https://forms.gle/HSeAeuHhTdByLkU8A

