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12 Electrodynamics and Relativity

12.1 THE SPECIAL THEORY OF RELATIVITY

12.1.1 Einstein’s Postulates

Classical mechanics obeys the principle of relativity: the same laws apply in
any inertial reference frame. By “inertial” I mean that the system is at rest or
moving with constant velocity.1 Imagine, for example, that you have loaded a
billiard table onto a railroad car, and the train is going at constant speed down
a smooth straight track. The game will proceed exactly the same as it would
if the train were parked in the station; you don’t have to “correct” your shots
for the fact that the train is moving—indeed, if you pulled all the curtains, you
would have no way of knowing whether the train was moving or not. Notice
by contrast that you know immediately if the train speeds up, or slows down,
or rounds a corner, or goes over a bump—the billiard balls roll in weird curved
trajectories, and you yourself feel a lurch and spill coffee on your shirt. The
laws of mechanics, then, are certainly not the same in accelerating reference
frames.

In its application to classical mechanics, the principle of relativity is hardly
new; it was stated clearly by Galileo. Question: does it also apply to the laws of
electrodynamics? At first glance, the answer would seem to be no. After all, a
charge in motion produces a magnetic field, whereas a charge at rest does not. A
charge carried along by the train would generate a magnetic field, but someone on
the train, applying the laws of electrodynamics in that system, would predict no
magnetic field. In fact, many of the equations of electrodynamics, starting with
the Lorentz force law, make explicit reference to “the” velocity of the charge.
It certainly appears, therefore, that electromagnetic theory presupposes the exis-
tence of a unique stationary reference frame, with respect to which all velocities
are to be measured.

And yet there is an extraordinary coincidence that gives us pause. Suppose we
mount a wire loop on a freight car, and have the train pass between the poles of a

1This raises an awkward problem: If the laws of physics hold just as well in a uniformly moving frame,
then we have no way of identifying the “rest” frame in the first place, and hence no way of checking
that some other frame is moving at constant velocity. To avoid this trap, we define an inertial frame
formally as one in which Newton’s first law holds. If you want to know whether you’re in an inertial
frame, throw some rocks around—if they travel in straight lines at constant speed, you’ve got yourself
an inertial frame, and any frame moving at constant velocity with respect to you will be another inertial
frame (see Prob. 12.1).
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Wire loop

FIGURE 12.1

giant magnet (Fig. 12.1). As the loop rides through the magnetic field, a motional
emf is established; according to the flux rule (Eq. 7.13),

E = −d�

dt
.

This emf, remember, is due to the magnetic force on charges in the wire loop,
which are moving along with the train. On the other hand, if someone on the
train naïvely applied the laws of electrodynamics in that system, what would the
prediction be? No magnetic force, because the loop is at rest. But as the magnet
flies by, the magnetic field in the freight car changes, and a changing magnetic
field induces an electric field, by Faraday’s law. The resulting electric force would
generate an emf in the loop given by Eq. 7.14:

E = −d�

dt
.

Because Faraday’s law and the flux rule predict exactly the same emf, people on
the train will get the right answer, even though their physical interpretation of the
process is completely wrong!

Or is it? Einstein could not believe this was a mere coincidence; he took it,
rather, as a clue that electromagnetic phenomena, like mechanical ones, obey the
principle of relativity. In his view, the analysis by the observer on the train is just
as valid as that of the observer on the ground. If their interpretations differ (one
calling the process electric, the other magnetic), so be it; their actual predictions
are in agreement. Here’s what he wrote on the first page of his 1905 paper intro-
ducing the special theory of relativity:

It is known that Maxwell’s electrodynamics—as usually understood at
the present time—when applied to moving bodies, leads to asymmetries
which do not appear to be inherent in the phenomena. Take, for example, the
reciprocal electrodynamic action of a magnet and a conductor. The observ-
able phenomenon here depends only on the relative motion of the conductor
and the magnet, whereas the customary view draws a sharp distinction be-
tween the two cases in which either one or the other of these bodies is in
motion. For if the magnet is in motion and the conductor at rest, there arises
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in the neighborhood of the magnet an electric field . . . producing a current
at the places where parts of the conductor are situated. But if the magnet is
stationary and the conductor in motion, no electric field arises in the neigh-
borhood of the magnet. In the conductor, however, we find an electromotive
force . . . which gives rise—assuming equality of relative motion in the two
cases discussed—to electric currents of the same path and intensity as those
produced by the electric forces in the former case.

Examples of this sort, together with unsuccessful attempts to discover
any motion of the earth relative to the “light medium,” suggest that the phe-
nomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest.2

But I’m getting ahead of the story. To Einstein’s predecessors, the equality
of the two emfs was just a lucky accident; they had no doubt that one observer
was right and the other was wrong. They thought of electric and magnetic fields as
strains in an invisible jellylike medium called ether, which permeated all of space.
The speed of the charge was to be measured with respect to the ether—only then
would the laws of electrodynamics be valid. The train observer is wrong, because
that frame is moving relative to the ether.

But wait a minute! How do we know the ground observer isn’t moving relative
to the ether, too? After all, the earth rotates on its axis once a day and revolves
around the sun once a year; the solar system circulates around the galaxy, and for
all I know the galaxy itself is moving at a high speed through the cosmos. All told,
we should be traveling at well over 50 km/s with respect to the ether. Like a mo-
torcycle rider on the open road, we face an “ether wind” of high velocity—unless
by some miraculous coincidence we just happen to find ourselves in a tailwind of
precisely the right strength, or the earth has some sort of “windshield” and drags
its local supply of ether along with it. Suddenly it becomes a matter of crucial im-
portance to find the ether frame, experimentally, or else all our calculations will
be invalid.

The problem, then, is to determine our motion through the ether—to measure
the speed and direction of the “ether wind.” How shall we do it? At first glance
you might suppose that practically any electromagnetic experiment would suf-
fice: If Maxwell’s equations are valid only with respect to the ether frame, any
discrepancy between the experimental result and the theoretical prediction would
be ascribable to the ether wind. Unfortunately, as nineteenth-century physicists
soon realized, the anticipated error in a typical experiment is extremely small; as
in the example above, “coincidences” always seem to conspire to hide the fact that
we are using the “wrong” reference frame. So it takes an uncommonly delicate
experiment to do the job.

2A translation of Einstein’s first relativity paper, “On the Electrodynamics of Moving Bodies,” is
reprinted in The Principle of Relativity, by H. A. Lorentz et al. (New York: Dover, 1923).
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Now, among the results of classical electrodynamics is the prediction that elec-
tromagnetic waves travel through the vacuum at a speed

1√
ε0μ0

= 3.00 × 108m/s,

relative (presumably) to the ether. In principle, then, one should be able to detect
the ether wind by simply measuring the speed of light in various directions. Like a
motorboat on a river, the net speed “downstream” should be a maximum, for here
the light is swept along by the ether; in the opposite direction, where it is bucking
the current, the speed should be a minimum (Fig. 12.2).

Ether wind

Speed of light

FIGURE 12.2

While the idea of this experiment could not be simpler, its execution is another
matter, because light travels so inconveniently fast. If it weren’t for that “technical
detail,” you could do it with a flashlight and a stopwatch. As it happened, an
elaborate and lovely experiment was devised by Michelson and Morley, using an
optical interferometer of fantastic precision. I shall not go into the details here,
because I do not want to distract your attention from the two essential points: (1)
all Michelson and Morley were trying to do was compare the speed of light in
different directions, and (2) what they in fact discovered was that this speed is
exactly the same in all directions.

Nowadays, when students are taught in high school to snicker at the naïveté of
the ether model, it takes some imagination to comprehend how utterly perplexing
this result must have been at the time. All other waves (water waves, sound waves,
waves on a string) travel at a prescribed speed relative to the propagating medium
(the stuff that does the waving), and if this medium is in motion with respect to
the observer, the net speed is always greater “downstream” than “upstream.” Over
the next 20 years, a series of improbable schemes were concocted in an effort
to explain why this does not occur with light. Michelson and Morley themselves
interpreted their experiment as confirmation of the “ether drag” hypothesis, which
held that the earth somehow pulls the ether along with it. But this was found to be
inconsistent with other observations, notably the aberration of starlight.3 Various
so-called “emission” theories were proposed, according to which the speed of
electromagnetic waves is governed by the motion of the source—as it would be in

3A discussion of the Michelson-Morley experiment and related matters is to be found in R. Resnick’s
Introduction to special relativity (New York: John Wiley, 1968), Chapter 1.
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a corpuscular theory (conceiving of light as a stream of particles). Such theories
called for implausible modifications in Maxwell’s equations, but in any event they
were discredited by experiments using extraterrestrial light sources. Meanwhile,
Fitzgerald and Lorentz suggested that the ether wind physically compresses all
matter (including the Michelson-Morley apparatus itself) in just the right way to
compensate for, and thereby conceal, the variation in speed with direction. As it
turns out, there is a grain of truth in this, although their idea of the reason for the
contraction was quite wrong.

At any rate, it was not until Einstein that anyone took the Michelson-Morley
result at face value, and suggested that the speed of light is a universal constant,
the same in all directions, regardless of the motion of the observer or the source.
There is no ether wind because there is no ether. Any inertial system is a suitable
reference frame for the application of Maxwell’s equations, and the velocity of a
charge is to be measured not with respect to a (nonexistent) absolute rest frame,
nor with respect to a (nonexistent) ether, but simply with respect to the particular
inertial system you happen to have chosen.

Inspired, then, both by internal theoretical hints (the fact that the laws of elec-
trodynamics are such as to give the right answer even when applied in the “wrong”
system) and by external empirical evidence (the Michelson-Morley experiment4),
Einstein proposed his two famous postulates:

1. The principle of relativity. The laws of physics apply in all inertial
reference systems.

2. The universal speed of light. The speed of light in vacuum is the
same for all inertial observers, regardless of the motion of the source.

The special theory of relativity derives from these two postulates. The first ele-
vates Galileo’s observation about classical mechanics to the status of a general
law, applying to all of physics. It states that there is no absolute rest system. The
second might be considered Einstein’s response to the Michelson-Morley exper-
iment. It means that there is no ether. (Some authors consider Einstein’s second
postulate redundant—no more than a special case of the first. They maintain that
the very existence of ether would violate the principle of relativity, in the sense
that it would define a unique stationary reference frame. I think this is nonsense.
The existence of air as a medium for sound does not invalidate the theory of
relativity. Ether is no more an absolute rest system than the water in a goldfish
bowl—which is a special system, if you happen to be the goldfish, but scarcely
“absolute.”)5

Unlike the principle of relativity, which had roots going back several cen-
turies, the universal speed of light was radically new—and, on the face of it,

4Actually, Einstein appears to have been only dimly aware of the Michelson-Morley experiment at the
time. For him, the theoretical argument was decisive.
5I put it this way in an effort to dispel some misunderstanding as to what constitutes an absolute rest
frame. In 1977, it became possible to measure the speed of the earth through the 3 K background
radiation left over from the “big bang.” Does this mean we have found an absolute rest system, and
relativity is out the window? Of course not.
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preposterous. For if I walk 5 mi/h down the corridor of a train going 60 mi/h,
my net speed relative to the ground is “obviously” 65 mi/h—the speed of A (me)
with respect to C (ground) is equal to the speed of A relative to B (train) plus the
speed of B relative to C :

vAC = vAB + vBC . (12.1)

And yet, if A is a light signal (whether it comes from a flashlight on the train or
a lamp on the ground or a star in the sky) Einstein would have us believe that its
speed is c relative to the train and c relative to the ground:

vAC = vAB = c. (12.2)

Clearly, Eq. 12.1, which we now call Galileo’s velocity addition rule (no one
before Einstein would have bothered to give it a name at all) is incompatible
with the second postulate. In special relativity, as we shall see, it is replaced by
Einstein’s velocity addition rule:

vAC = vAB + vBC

1 + (vABvBC/c2)
. (12.3)

For “ordinary” speeds (vAB � c, vBC � c), the denominator is so close to 1 that
the discrepancy between Galileo’s formula and Einstein’s formula is negligible.
On the other hand, Einstein’s formula has the desired property that if vAB = c,
then automatically vAC = c:

vAC = c + vBC

1 + (cvBC/c2)
= c.

But how can Galileo’s rule, which seems to rely on nothing but common sense,
possibly be wrong? And if it is wrong, what does this do to all of classical physics?
The answer is that special relativity compels us to alter our notions of space and
time themselves, and therefore also of such derived quantities as velocity, mo-
mentum, and energy. Although it developed historically out of Einstein’s contem-
plation of electrodynamics, the special theory is not limited to any particular class
of phenomena—rather, it is a description of the space-time “arena” in which all
physical phenomena take place. And in spite of the reference to the speed of light
in the second postulate, relativity has nothing to do with light: c is a fundamental
velocity, and it happens that light travels at that speed, but it is perfectly possi-
ble to conceive of a universe in which there are no electric charges, and hence
no electromagnetic fields or waves, and yet relativity would still prevail. Because
relativity defines the structure of space and time, it claims authority not merely
over all presently known phenomena, but over those not yet discovered. It is, as
Kant would say, a “prolegomenon to any future physics.”
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Problem 12.1 Let S be an inertial reference system. Use Galileo’s velocity addition
rule.

(a) Suppose that S̄ moves with constant velocity relative to S. Show that S̄ is also
an inertial reference system. [Hint: Use the definition in footnote 1.]

(b) Conversely, show that if S̄ is an inertial system, then it moves with respect to S
at constant velocity.

Problem 12.2 As an illustration of the principle of relativity in classical mechanics,
consider the following generic collision: In inertial frame S, particle A (mass m A,
velocity uA) hits particle B (mass m B , velocity uB). In the course of the collision
some mass rubs off A and onto B, and we are left with particles C (mass mC ,
velocity uC ) and D (mass m D , velocity uD). Assume that momentum (p ≡ mu) is
conserved in S.

(a) Prove that momentum is also conserved in inertial frame S̄, which moves with
velocity v relative to S. [Use Galileo’s velocity addition rule—this is an entirely
classical calculation. What must you assume about mass?]

(b) Suppose the collision is elastic in S; show that it is also elastic in S̄.

Problem 12.3

(a) What’s the percent error introduced when you use Galileo’s rule, instead of
Einstein’s, with vAB = 5 mi/h and vBC = 60 mi/h?

(b) Suppose you could run at half the speed of light down the corridor of a train
going three-quarters the speed of light. What would your speed be relative to
the ground?

(c) Prove, using Eq. 12.3, that if vAB < c and vBC < c then vAC < c. Interpret this
result.

FIGURE 12.3

Problem 12.4 As the outlaws escape in their getaway car, which goes 3
4 c, the police

officer fires a bullet from the pursuit car, which only goes 1
2 c (Fig. 12.3). The muzzle

velocity of the bullet (relative to the gun) is 1
3 c. Does the bullet reach its target

(a) according to Galileo, (b) according to Einstein?

12.1.2 The Geometry of Relativity

In this section I present a series of gedanken (thought) experiments that serve
to introduce the three most striking geometrical consequences of Einstein’s pos-
tulates: time dilation, Lorentz contraction, and the relativity of simultaneity. In
Sect. 12.1.3 the same results will be derived more systematically, using Lorentz
transformations.
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(b) (a)

FIGURE 12.4

(b) (a)

FIGURE 12.5

(i) The relativity of simultaneity. Imagine a freight car, traveling at constant
speed along a smooth, straight track (Fig. 12.4). In the very center of the car
there hangs a light bulb. When someone switches it on, the light spreads out in
all directions at speed c. Because the lamp is equidistant from the two ends, an
observer on the train will find that the light reaches the front end at the same
instant as it reaches the back end: The two events in question—(a) light reaches
the front end (and maybe a buzzer goes off) and (b) light reaches the back end
(another buzzer sounds)—occur simultaneously.

However, to an observer on the ground these same two events are not simul-
taneous. For as the light travels out from the bulb (going at speed c in both
directions—that’s the second postulate), the train itself moves forward, so the
beam going to the back end has a shorter distance to travel than the one going
forward (Fig. 12.5). According to this observer, therefore, event (b) happens be-
fore event (a). An observer passing by on an express train, meanwhile, would
report that (a) preceded (b). Conclusion:

Two events that are simultaneous in one inertial system are not, in
general, simultaneous in another.

Naturally, the train has to be going awfully fast before the discrepancy becomes
detectable—that’s why you don’t notice it all the time.

Of course, it’s always possible for a naïve witness to be mistaken about si-
multaneity: a person sitting in the back corner of the car would hear buzzer b
before buzzer a, simply because he’s closer to the source of the sound, and a child
might infer that b actually rang before a. But this is a trivial error, having nothing
to do with special relativity—obviously, you must correct for the time the signal
(sound, light, carrier pigeon, or whatever) takes to reach you. When I speak of an
observer, I mean someone with the sense to make this correction, and an obser-
vation is what he records after doing so. What you hear or see, therefore, is not
the same as what you observe. An observation is an artificial reconstruction after
the fact, when all the data are in, and it doesn’t depend on where the observer
is located. In fact, a wise observer will avoid the whole problem by stationing
assistants at strategic locations, each equipped with a watch synchronized to a
master clock, so that time measurements can be made right at the scene. I belabor
this point in order to emphasize that the relativity of simultaneity is a genuine
discrepancy between measurements made by competent observers in relative mo-
tion, not a simple mistake arising from a failure to account for the travel time of
light signals.
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Problem 12.5 Synchronized clocks are stationed at regular intervals, a million km
apart, along a straight line. When the clock next to you reads 12 noon:

(a) What time do you see on the 90th clock down the line?

(b) What time do you observe on that clock?

Problem 12.6 Every 2 years, more or less, The New York Times publishes an article
in which some astronomer claims to have found an object traveling faster than the
speed of light. Many of these reports result from a failure to distinguish what is
seen from what is observed—that is, from a failure to account for light travel time.
Here’s an example: A star is traveling with speed v at an angle θ to the line of sight
(Fig. 12.6). What is its apparent speed across the sky? (Suppose the light signal from
b reaches the earth at a time �t after the signal from a, and the star has meanwhile
advanced a distance �s across the celestial sphere; by “apparent speed,” I mean
�s/�t .) What angle θ gives the maximum apparent speed? Show that the apparent
speed can be much greater than c, even if v itself is less than c.

θ

Δ s

To earth

b

a

v

FIGURE 12.6

(ii) Time dilation. Now let’s consider a light ray that leaves the bulb and strikes
the floor of the car directly below. Question: How long does it take the light to
make this trip? From the point of view of an observer on the train, the answer is
easy: If the height of the car is h, the time is

�t̄ = h

c
. (12.4)

vΔt
h

FIGURE 12.7
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(I’ll use an overbar to denote measurements made on the train.) On the other hand,
as observed from the ground, this same ray must travel farther, because the train
itself is moving. From Fig. 12.7, I see that this distance is

√
h2 + (v�t)2, so

�t =
√

h2 + (v�t)2

c
.

Solving for �t , we have

�t = h

c

1√
1 − v2/c2

,

and therefore

�t̄ =
√

1 − v2/c2 �t . (12.5)

Evidently the time elapsed between the same two events—(a) light leaves bulb,
and (b) light strikes center of floor—is different for the two observers. In fact, the
interval recorded on the train clock, �t̄ , is shorter by the factor

γ ≡ 1√
1 − v2/c2

. (12.6)

Conclusion:

Moving clocks run slow.

This is called time dilation. It doesn’t have anything to do with the mechanics
of clocks; it’s a statement about the nature of time, which applies to all properly
functioning timepieces.

Of all Einstein’s predictions, none has received more spectacular and persua-
sive confirmation than time dilation. Most elementary particles are unstable: they
disintegrate after a characteristic lifetime6 that varies from one species to the next.
The lifetime of a neutron is 15 min; of a muon, 2 × 10−6 s; and of a neutral pion,
9 × 10−17 s. But these are lifetimes of particles at rest. When particles are mov-
ing at speeds close to c they last much longer, for their internal clocks (whatever
it is that tells them when their time is up) are running slow, in accordance with
Einstein’s time dilation formula.

Example 12.1. A muon is traveling through the laboratory at three-fifths the
speed of light. How long does it last?

6Actually, an individual particle may last longer or shorter than this. Particle disintegration is a random
process, and I should really speak of the average lifetime for the species. But to avoid irrelevant
complication, I shall pretend that every particle disintegrates after precisely the average lifetime.
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Solution
In this case,

γ = 1√
1 − (3/5)2

= 5

4
,

so it lives longer (than at rest) by a factor of 5
4 :

5

4
× (2 × 10−6) s = 2.5 × 10−6 s.

It may strike you that time dilation is inconsistent with the principle of relativ-
ity. For if the ground observer says the train clock runs slow, the train observer can
with equal justice claim that the ground clock runs slow—after all, from the train’s
point of view it is the ground that is in motion. Who’s right? Answer: They’re both
right! On closer inspection, the “contradiction,” which seems so stark, evaporates.
Let me explain: In order to check the rate of the train clock, the ground observer
uses two of his own clocks (Fig. 12.8): one to compare times at the beginning of
the interval, when the train clock passes point A, the other to compare times at
the end of the interval, when the train clock passes point B. Of course, he must
be careful to synchronize his clocks before the experiment. What he finds is that
while the train clock ticked off, say, 3 minutes, the interval between his own two
clock readings was 5 minutes. He concludes that the train clock runs slow.

Meanwhile, the observer on the train is checking the rate of the ground clock
by the same procedure: She uses two carefully synchronized train clocks, and
compares times with a single ground clock as it passes by each of them in turn
(Fig. 12.9). She finds that while the ground clock ticks off 3 minutes, the interval
between her train clocks is 5 minutes, and concludes that the ground clock runs
slow. Is there a contradiction? No, for the two observers have measured different
things. The ground observer compared one train clock with two ground clocks;
the train observer compared one ground clock with two train clocks. Each fol-
lowed a sensible and correct procedure, comparing a single moving clock with
two stationary ones. “So what,” you say, “the stationary clocks were synchro-
nized in each instance, so it cannot matter that they used two different ones.”
But there’s the rub: Clocks that are properly synchronized in one system will not

Train clock

Ground clock A Ground clock B

BA

FIGURE 12.8

Train clock B

Ground clock

Train clock A

FIGURE 12.9
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be synchronized when observed from another system. They can’t be, for to say
that two clocks are synchronized is to say that they read 12 noon simultaneously,
and we have already learned that what’s simultaneous to one observer is not si-
multaneous to another. So whereas each observer conducted a perfectly sound
measurement, from his/her own point of view, the other observer (watching the
process) considers that she/he made the most elementary blunder in the book, by
using two unsynchronized clocks. That’s how, in spite of the fact that his clocks
“actually” run slow, he manages to conclude that hers are running slow (and vice
versa).

Because moving clocks are not synchronized, it is essential when checking
time dilation to focus attention on a single moving clock. All moving clocks run
slow by the same factor, but you can’t start timing on one clock and then switch
to another because they weren’t in step to begin with. But you can use as many
stationary clocks (stationary with respect to you, the observer) as you please, for
they are properly synchronized (moving observers would dispute this, but that’s
their problem).

Example 12.2. The twin paradox. On her 21st birthday, an astronaut takes off
in a rocket ship at a speed of 12

13 c. After 5 years have elapsed on her watch, she
turns around and heads back at the same speed to rejoin her twin brother, who
stayed at home. Question: How old is each twin at their reunion?

Solution
The traveling twin has aged 10 years (5 years out, 5 years back); she arrives at
home just in time to celebrate her 31st birthday. However, as viewed from earth,
the moving clock has been running slow by a factor

γ = 1√
1 − (12/13)2

= 13

5
.

The time elapsed on earthbound clocks is 13
5 × 10 = 26, and her brother will be

therefore celebrating his 47th birthday—he is now 16 years older than his twin sis-
ter! But don’t be deceived: This is no fountain of youth for the traveling twin, for
though she may die later than her brother, she will not have lived any more—she’s
just done it slower. During the flight, all her biological processes—metabolism,
pulse, thought, and speech—are subject to the same time dilation that affects her
watch.

The so-called twin paradox arises when you try to tell this story from the
point of view of the traveling twin. She sees the earth fly off at 12

13 c, turn around
after 5 years, and return. From her point of view, it would seem, she’s at rest,
whereas her brother is in motion, and hence it is he who should be younger at the
reunion. An enormous amount has been written about the twin paradox, but the
truth is there’s really no paradox here at all: this second analysis is simply wrong.
The two twins are not equivalent. The traveling twin experiences acceleration
when she turns around to head home, but her brother does not. To put it in fancier
language, the traveling twin is not in an inertial system—more precisely, she’s
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in one inertial system on the way out and a completely different inertial system
on the way back. You’ll see in Prob. 12.16 how to analyze this problem correctly
from her perspective, but as far as the resolution of the “paradox” is concerned, it
is enough to note that the traveling twin cannot claim to be a stationary observer
because you can’t undergo acceleration and remain stationary.

Problem 12.7 In a laboratory experiment, a muon is observed to travel 800 m before
disintegrating. A graduate student looks up the lifetime of a muon (2 × 10−6 s) and
concludes that its speed was

v = 800 m

2 × 10−6 s
= 4 × 108 m/s.

Faster than light! Identify the student’s error, and find the actual speed of this muon.

Problem 12.8 A rocket ship leaves earth at a speed of 3
5 c. When a clock on the

rocket says 1 hour has elapsed, the rocket ship sends a light signal back to earth.

(a) According to earth clocks, when was the signal sent?

(b) According to earth clocks, how long after the rocket left did the signal arrive
back on earth?

(c) According to the rocket observer, how long after the rocket left did the signal
arrive back on earth?

(iii) Lorentz contraction. For the third gedanken experiment you must imag-
ine that we have set up a lamp at one end of a boxcar and a mirror at the other,
so that a light signal can be sent down and back (Fig. 12.10). Question: How long
does the signal take to complete the round trip? To an observer on the train, the
answer is

�t̄ = 2
�x̄

c
, (12.7)

where �x̄ is the length of the car (the overbar, as before, denotes measurements
made on the train). To an observer on the ground, the process is more complicated
because of the motion of the train. If �t1 is the time for the light signal to reach
the front end, and �t2 is the return time, then (see Fig. 12.11):

�t1 = �x + v�t1
c

, �t2 = �x − v�t2
c

,

Lamp
Mirror

v

FIGURE 12.10

vΔt1

v

vΔt2

FIGURE 12.11
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or, solving for �t1 and �t2:

�t1 = �x

c − v
, �t2 = �x

c + v
.

So the round-trip time is

�t = �t1 + �t2 = 2
�x

c

1

(1 − v2/c2)
. (12.8)

But these intervals are related by the time dilation formula, Eq. 12.5:

�t̄ =
√

1 − v2/c2 �t.

Applying this to Eqs. 12.7 and 12.8, I conclude that

�x̄ = 1√
1 − v2/c2

�x . (12.9)

The length of the boxcar is not the same when measured by an observer on the
ground, as it is when measured by an observer on the train—from the ground
point of view, it is somewhat shorter. Conclusion:

Moving objects are shortened.

We call this Lorentz contraction. Notice that the same factor,

γ ≡ 1√
1 − v2/c2

,

appears in both the time dilation formula and the Lorentz contraction formula.
This makes it all very easy to remember: Moving clocks run slow, moving sticks
are shortened, and the factor is always γ .

Of course, the observer on the train doesn’t think her car is shortened—her
meter sticks are contracted by that same factor, so all her measurements come out
the same as when the train was standing in the station. In fact, from her point of
view it is objects on the ground that are shortened. This raises again a paradoxical
problem: If A says B’s sticks are short, and B says A’s sticks are short, who is
right? Answer: They both are! But to reconcile the rival claims we must study
carefully the actual process by which length is measured.

Suppose you want to find the length of a board. If it’s at rest (with respect to
you) you simply lay your ruler down next to the board, record the readings at
each end, and subtract (Fig. 12.12). (If you’re really clever, you’ll line up the left
end of the ruler against the left end of the board—then you only have to read one
number.)

But what if the board is moving? Same story, only this time, of course, you
must be careful to read the two ends at the same instant of time. If you don’t, the
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Board

Ruler

FIGURE 12.12

board will move in the course of measurement, and obviously you’ll get the wrong
answer. But therein lies the problem: Because of the relativity of simultaneity the
two observers disagree on what constitutes “the same instant of time.” When the
person on the ground measures the length of the boxcar, he reads the position of
the two ends at the same instant in his system. But the person on the train, watch-
ing him do it, complains that he read the front end first, then waited a moment
before reading the back end. Naturally, he came out short, in spite of the fact
that (to her) he was using an undersized meter stick, which would otherwise have
yielded a number too large. Both observers measure lengths correctly (from the
point of view of their respective inertial frames), and each finds the other’s sticks
to be shortened. Yet there is no inconsistency, for they are measuring different
things, and each considers the other’s method improper.

Example 12.3. The barn and ladder paradox. Unlike time dilation, there is
no direct experimental confirmation of Lorentz contraction, simply because it’s
too difficult to get an object of measurable size going anywhere near the speed
of light. The following parable illustrates how bizarre the world would be if the
speed of light were more accessible.

There once was a farmer who had a ladder too long to store in his barn
(Fig. 12.13a). He chanced one day to read some relativity, and a solution to his
problem suggested itself. He instructed his daughter to run with the ladder as
fast as she could—the moving ladder having Lorentz-contracted to a size the
barn could easily accommodate, she was to rush through the door, whereupon the

(a)

(c)

(b)

FIGURE 12.13
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farmer would slam it behind her, capturing the ladder inside (Fig. 12.13b). The
daughter, however, has read somewhat farther in the relativity book; she points
out that in her reference frame the barn, not the ladder, will contract, and the fit
will be even worse than it was with the two at rest (Fig. 12.13c). Question: Who’s
right? Will the ladder fit inside the barn, or won’t it?

Solution
They’re both right! When you say “the ladder is in the barn,” you mean that all
parts of it are inside at one instant of time, but in view of the relativity of si-
multaneity, that’s a condition that depends on the observer. There are really two
relevant events here:

a. Back end of ladder makes it in the door.
b. Front end of ladder hits far wall of barn.

The farmer says a occurs before b, so there is a time when the ladder is entirely
within the barn; his daughter says b precedes a, so there is not. Contradiction?
Nope—just a difference in perspective.

“But come now,” I hear you protest, “when it’s all over and the dust clears,
either the ladder is inside the barn, or it isn’t. There can be no dispute about that.”
Quite so, but now you’re introducing a new element into the story: What happens
as the ladder is brought to a stop? Suppose the farmer grabs the last rung of the
ladder firmly with one hand, while he slams the door with the other. Assuming
it remains intact, the ladder must now stretch out to its rest length. Evidently, the
front end keeps going, even after the rear end has stopped! Expanding like an
accordian, the front end of the ladder smashes into the far side of the barn. In
truth, the whole notion of a “rigid” object loses its meaning in relativity, for when
it changes its speed, different parts do not in general accelerate simultaneously—
in this way, the material stretches or shrinks to reach the length appropriate to its
new velocity.7

But to return to the question at hand: When the ladder finally comes to a stop,
is it inside the barn or not? The answer is indeterminate. When the front end of
the ladder hits the far side of the barn, something has to give, and the farmer is left
either with a broken ladder inside the barn or with the ladder intact poking through
a hole in the wall. In any event, he is unlikely to be pleased with the outcome.

One final comment on Lorentz contraction. A moving object is shortened only
along the direction of its motion:

Dimensions perpendicular to the velocity are not contracted.

Indeed, in deriving the time dilation formula I took it for granted that the height
of the train is the same for both observers. I’ll now justify this, using a lovely
gedanken experiment suggested by Taylor and Wheeler.8 Imagine that we build

7For a related paradox see E. Pierce, Am. J. Phys. 75, 610 (2007).
8E. F. Taylor and J. A. Wheeler, Spacetime Physics 2nd ed. (San Francisco: W. H. Freeman, 1992).
A somewhat different version of the same argument is given in J. H. Smith, Introduction to special
relativity (Champaign, IL: Stipes, 1965).
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a wall beside the railroad tracks, and 1 m above the rails (as measured on the
ground), we paint a horizontal blue line. When the train goes by, a passenger leans
out the window holding a wet paintbrush 1 m above the rails, as measured on the
train, leaving a horizontal red line on the wall. Question: Does the passenger’s red
line lie above or below our blue one? If the rule were that perpendicular directions
contract, then the person on the ground would predict that the red line is lower,
while the person on the train would say it’s the blue one (to the latter, of course,
the ground is moving). The principle of relativity says that both observers are
equally justified, but they cannot both be right. No subtleties of simultaneity or
synchronization can rationalize this contradiction; either the blue line is higher or
the red one is—unless they exactly coincide, which is the inescapable conclusion.
There cannot be a law of contraction (or expansion) of perpendicular dimensions,
for it would lead to irreconcilably inconsistent predictions.

Problem 12.9 A Lincoln Continental is twice as long as a VW Beetle, when they
are at rest. As the Continental overtakes the VW, going through a speed trap, a
(stationary) policeman observes that they both have the same length. The VW is
going at half the speed of light. How fast is the Lincoln going? (Leave your answer
as a multiple of c.)

Problem 12.10 A sailboat is manufactured so that the mast leans at an angle θ̄ with
respect to the deck. An observer standing on a dock sees the boat go by at speed v

(Fig. 12.14). What angle does this observer say the mast makes?

v
θ

FIGURE 12.14

R

ω

FIGURE 12.15

Problem 12.11 A record turntable of radius R rotates at angular velocity ω!
(Fig. 12.15). The circumference is presumably Lorentz-contracted, but the radius
(being perpendicular to the velocity) is not. What’s the ratio of the circumference
to the diameter, in terms of ω and R? According to the rules of ordinary geometry,
it has to be π . What’s going on here?9

9This is known as Ehrenfest’s paradox; for discussion and references, see H. Arzelies, Relativistic
Kinematics (Elmsford, NY: Pergamon Press, 1966), Chap. IX, or T. A. Weber, Am. J. Phys. 65, 486
(1997).
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12.1.3 The Lorentz Transformations

Any physical process consists of one or more events. An “event” is something
that takes place at a specific location (x, y, z), at a precise time (t). The explosion
of a firecracker, for example, is an event; a tour of Europe is not. Suppose we
know the coordinates (x, y, z, t) of a particular event E in one inertial system S,
and we would like to calculate the coordinates (x̄, ȳ, z̄, t̄) of that same event in
some other inertial system S̄. What we need is a “dictionary” for translating from
the language of S to the language of S̄.

We may as well orient our axes as shown in Fig. 12.16, so that S̄ slides along
the x axis at speed v. If we “start the clock” (t = 0) at the moment the origins
(O and Ō) coincide, then at time t , Ō will be a distance vt from O, and hence

x = d + vt, (12.10)

where d is the distance from Ō to Ā at time t ( Ā is the point on the x̄ axis that
is even with E when the event occurs). Before Einstein, anyone would have said
immediately that

d = x̄, (12.11)

and thus constructed the “dictionary”

(i) x̄ = x − vt,

(ii) ȳ = y,

(iii) z̄ = z,

(iv) t̄ = t.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.12)

These are now called the Galilean transformations, though they scarcely deserve
so fine a title—the last one, in particular, went without saying, since everyone as-
sumed the flow of time is the same for all observers. In the context of special
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relativity, however, we must expect (iv) to be replaced by a rule that incorporates
time dilation, the relativity of simultaneity, and the nonsynchronization of moving
clocks. Likewise, there will be a modification in (i) to account for Lorentz con-
traction. As for (ii) and (iii), they, at least, remain unchanged, for we have already
seen that there can be no modification of lengths perpendicular to the motion.

But where does the classical derivation of (i) break down? Answer: In
Eq. 12.11. For d is the distance from Ō to Ā as measured in S, whereas x̄ is
the distance from Ō to Ā as measured in S̄ . Because Ō and Ā are at rest in S̄, x̄
is the “moving stick,” which appears contracted to S:

d = 1

γ
x̄ . (12.13)

When this is inserted in Eq. 12.10 we obtain the relativistic version of (i):

x̄ = γ (x − vt). (12.14)

Of course, we could have run the same argument from the point of view of
S̄. The diagram (Fig. 12.17) looks similar, but in this case it depicts the scene at
time t̄ , whereas Fig. 12.16 showed the scene at time t . (Note that t and t̄ represent
the same physical instant at E , but not elsewhere, because of the relativity of
simultaneity.) If we assume that S̄ also starts its clock when the origins coincide,
then at time t̄ , O will be a distance vt̄ from Ō, and therefore

x̄ = d̄ − vt̄, (12.15)

where d̄ is the distance from O to A at time t̄ , and A is that point on the x axis
that is even with E when the event occurs. The classical physicist would have said
that x = d̄, and, using (iv), recovered (i). But, as before, relativity demands that
we observe a subtle distinction: x is the distance from O to A in S, whereas d̄ is
the distance from O to A in S̄. Because O and A are at rest in S, x is the “moving
stick,” and

d̄ = 1

γ
x . (12.16)
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It follows that

x = γ (x̄ + vt̄). (12.17)

This last equation comes as no surprise, for the symmetry of the situation dic-
tates that the formula for x , in terms of x̄ and t̄ , should be identical to the formula
for x̄ in terms of x and t (Eq. 12.14), except for a switch in the sign of v. (If S̄ is
going to the right at speed v, with respect to S, then S is going to the left at speed
v, with respect to S̄ .) Nevertheless, this is a useful result, for if we substitute x̄
from Eq. 12.14, and solve for t̄ , we complete the relativistic “dictionary”:

(i) x̄ = γ (x − vt),

(ii) ȳ = y,

(iii) z̄ = z,

(iv) t̄ = γ
(

t − v

c2
x
)

.

(12.18)

These are the famous Lorentz transformations, with which Einstein replaced
the Galilean ones. They contain all the geometrical information in the special
theory, as the following examples illustrate. The reverse dictionary, which carries
you from S̄ back to S, can be obtained algebraically by solving (i) and (iv) for x
and t , or, more simply, by switching the sign of v:

(i′) x = γ (x̄ + vt̄),

(ii′) y = ȳ,

(iii′) z = z̄,

(iv′) t = γ
(

t̄ + v

c2
x̄
)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.19)

Example 12.4. Simultaneity, synchronization, and time dilation. Suppose
event A occurs at xA = 0, tA = 0, and event B occurs at xB = b, tB = 0. The
two events are simultaneous in S (they both take place at t = 0). But they are
not simultaneous in S̄, for the Lorentz transformations give x̄ A = 0, t̄A = 0 and
x̄B = γ b, t̄B = −γ (v/c2)b. According to the S̄ clocks, then, B occurred before
A. This is nothing new, of course—just the relativity of simultaneity. But I wanted
you to see how it follows from the Lorentz transformations.

Suppose that at time t = 0 observer S decides to examine all the clocks in S̄ .
He finds that they read different times, depending on their location; from (iv):

t̄ = −γ
v

c2
x .
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x = 0

x = 0

 clocks

clocks

v
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FIGURE 12.18

Those to the left of the origin (negative x) are ahead, and those to the right are
behind, by an amount that increases in proportion to their distance (Fig. 12.18).
Only the master clock at the origin reads t̄ = 0. Thus, the nonsynchronization of
moving clocks, too, follows directly from the Lorentz transformations. Of course,
from the S̄ viewpoint it is the S clocks that are out of synchronization, as you can
check by putting t̄ = 0 into equation (iv′).

Finally, suppose S focuses his attention on a single clock at rest in the S̄ frame
(say, the one at x̄ = a), and watches it over some interval �t . How much time
elapses on the moving clock? Because x̄ is fixed, (iv′) gives �t = γ�t̄ , or

�t̄ = 1

γ
�t.

That’s the old time dilation formula, derived now from the Lorentz transforma-
tions. Please note that it’s x̄ we hold fixed, here, because we’re watching one
moving clock. If you hold x fixed, then you’re watching a whole series of differ-
ent S̄ clocks as they pass by, and that won’t tell you whether any one of them is
running slow.

Example 12.5. Lorentz contraction. Imagine a stick at rest in S̄ (hence moving
to the right at speed v in S). Its rest length (that is, its length as measured in S̄) is
�x̄ = x̄r − x̄l , where the subscripts denote the right and left ends of the stick. If
an observer in S were to measure the stick, he would subtract the positions of the
two ends at one instant of his time t : �x = xr − xl (for tl = tr ). According to (i),
then,

�x = 1

γ
�x̄ .

This is the old Lorentz contraction formula. Note that it’s t we hold fixed, here,
because we’re talking about a measurement made by S, and he marks off the two
ends at the same instant of his time. (S̄ doesn’t have to be so fussy, since the stick
is at rest in her frame.)



12.1 The Special Theory of Relativity 523

Example 12.6. Einstein’s velocity addition rule. Suppose a particle moves a
distance dx (in S) in a time dt . Its velocity u is then

u = dx

dt
.

In S̄, meanwhile, it has moved a distance

dx̄ = γ (dx − vdt),

as we see from (i), in a time given by (iv):

dt̄ = γ
(

dt − v

c2
dx
)

.

The velocity in S̄ is therefore

ū = dx̄

dt̄
= γ (dx − vdt)

γ
(
dt − v/c2dx

) = (dx/dt − v)

1 − v/c2dx/dt
= u − v

1 − uv/c2
. (12.20)

This is Einstein’s velocity addition rule. To recover the more transparent nota-
tion of Eq. 12.3, let A be the particle, B be S, and C be S̄; then u = vAB, ū = vAC ,
and v = vC B = −vBC , so Eq. 12.20 becomes

vAC = vAB + vBC

1 + (vABvBC/c2)
.

Problem 12.12 Solve Eqs. 12.18 for x, y, z, t in terms of x̄, ȳ, z̄, t̄ , and check that
you recover Eqs. 12.19.

Problem 12.13 Sophie Zabar, clairvoyante, cried out in pain at precisely the instant
her twin brother, 500 km away, hit his thumb with a hammer. A skeptical scientist
observed both events (brother’s accident, Sophie’s cry) from an airplane traveling at
12
13 c to the right (Fig. 12.19). Which event occurred first, according to the scientist?
How much earlier was it, in seconds?

Problem 12.14

(a) In Ex. 12.6 we found how velocities in the x direction transform when you
go from S to S̄. Derive the analogous formulas for velocities in the y and z
directions.

(b) A spotlight is mounted on a boat so that its beam makes an angle θ̄ with the deck
(Fig. 12.20). If this boat is then set in motion at speed v, what angle θ does an
individual photon trajectory make with the deck, according to an observer on
the dock? What angle does the beam (illuminated, say, by a light fog) make?
Compare Prob. 12.10.
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Problem 12.15 You probably did Prob. 12.4 from the point of view of an observer
on the ground. Now do it from the point of view of the police car, the outlaws, and
the bullet. That is, fill in the gaps in the following table:

speed of →
relative to ↓ Ground Police Outlaws Bullet Do they escape?

Ground 0 1
2 c 3

4 c

Police 1
3 c

Outlaws
Bullet

Problem 12.16 The twin paradox revisited. On their 21st birthday, one twin gets!
on a moving sidewalk, which carries her out to star X at speed 4

5 c; her twin brother
stays home. When the traveling twin gets to star X, she immediately jumps onto the
returning moving sidewalk and comes back to earth, again at speed 4

5 c. She arrives
on her 39th birthday (as determined by her watch).

(a) How old is her twin brother?

(b) How far away is star X? (Give your answer in light years.)

Call the outbound sidewalk system S̄ and the inbound one S̃ (the earth system
is S). All three systems choose their coordinates and set their master clocks such
that x = x̄ = x̃ = 0, t = t̄ = t̃ = 0 at the moment of departure.

(c) What are the coordinates (x, t) of the jump (from outbound to inbound side-
walk) in S?

(d) What are the coordinates (x̄, t̄) of the jump in S̄?

(e) What are the coordinates (x̃, t̃) of the jump in S̃?

(f) If the traveling twin wants her watch to agree with the clock in S̃, how must she
reset it immediately after the jump? What does her watch then read when she
gets home? (This wouldn’t change her age, of course—she’s still 39—it would
just make her watch agree with the standard synchronization in S̃.)

(g) If the traveling twin is asked the question, “How old is your brother right now?”,
what is the correct reply (i) just before she makes the jump, (ii) just after she
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makes the jump? (Nothing dramatic happens to her brother during the split
second between (i) and (ii), of course; what does change abruptly is his sister’s
notion of what “right now, back home” means.)

(h) How many earth years does the return trip take? Add this to (ii) from (g) to
determine how old she expects him to be at their reunion. Compare your answer
to (a).

12.1.4 The Structure of Spacetime

(i) Four-vectors. The Lorentz transformations take on a simpler appearance when
expressed in terms of the quantities

x0 ≡ ct, β ≡ v

c
. (12.21)

Using x0 (instead of t) and β (instead of v) amounts to changing the unit of time
from the second to the meter—1 meter of x0 corresponds to the time it takes
light to travel 1 meter (in vacuum). If, at the same time, we number the x, y, z
coordinates, so that

x1 = x, x2 = y, x3 = z, (12.22)

then the Lorentz transformations read

x̄0 = γ (x0 − βx1),

x̄1 = γ (x1 − βx0),

x̄2 = x2,

x̄3 = x3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.23)

Or, in matrix form:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄0

x̄1

x̄2

x̄3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.24)

Letting Greek indices run from 0 to 3, this can be distilled into a single equa-
tion:

x̄μ =
3∑

ν=0

(�μ
ν )xν, (12.25)



526 Chapter 12 Electrodynamics and Relativity

where � is the Lorentz transformation matrix in Eq. 12.24 (the superscript μ

labels the row, the subscript ν labels the column). One virtue of writing things
in this abstract manner is that we can handle in the same format a more general
transformation, in which the relative motion is not along a common x x̄ axis; the
matrix � would be more complicated, but the structure of Eq. 12.25 is unchanged.

If this reminds you of the rotations we studied in Sect. 1.1.5, it’s no accident.
There we were concerned with the change in components when you switch to a
rotated coordinate system; here we are interested in the change of components
when you go to a moving system. In Chapter 1 we defined a (3-)vector as any set
of three components that transform under rotations the same way (x, y, z) do; by
extension, we now define a 4-vector as any set of four components that transform
in the same manner as (x0, x1, x2, x3) under Lorentz transformations:

āμ =
3∑

ν=0

�μ
ν aν . (12.26)

For the particular case of a transformation along the x axis,

ā0 = γ (a0 − βa1),

ā1 = γ (a1 − βa0),

ā2 = a2,

ā3 = a3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.27)

There is a 4-vector analog to the dot product (A · B ≡ Ax Bx + Ay By + Az Bz),
but it’s not just the sum of the products of like components; rather, the zeroth
components have a minus sign:

−a0b0 + a1b1 + a2b2 + a3b3. (12.28)

This is the four-dimensional scalar product; you should check for yourself
(Prob. 12.17) that it has the same value in all inertial systems:

−ā0b̄0 + ā1b̄1 + ā2b̄2 + ā3b̄3 = −a0b0 + a1b1 + a2b2 + a3b3; (12.29)

just as the ordinary dot product is invariant (unchanged) under rotations, this
combination is invariant under Lorentz transformations.

To keep track of the minus sign, it is convenient to introduce the covariant
vector aμ, which differs from the contravariant aμ only in the sign of the zeroth
component:

aμ = (a0, a1, a2, a3) ≡ (−a0, a1, a2, a3). (12.30)

You must be scrupulously careful about the placement of indices in this business:
upper indices designate contravariant vectors; lower indices are for covariant
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vectors. Raising or lowering the temporal index costs a minus sign (a0 = −a0);
raising or lowering a spatial index changes nothing (a1 = a1, a2 = a2, a3 = a3).
Formally,

aμ =
3∑

ν=0

gμνaν, where gμν ≡

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (12.31)

is the (Minkowski) metric.10

The scalar product can now be written with the summation symbol,

3∑
μ=0

aμbμ,

or, more compactly still,

aμbμ. (12.32)

(Summation is implied whenever a Greek index is repeated in a product—once as
a covariant index and once as contravariant. This is called the Einstein summa-
tion convention, after its inventor, who regarded it as one of his most important
contributions.) Of course, we could just as well take care of the minus sign by
switching to covariant b:

aμbμ = aμbμ = −a0b0 + a1b1 + a2b2 + a3b3. (12.33)

Problem 12.17 Check Eq. 12.29, using Eq. 12.27. [This only proves the invariance•
of the scalar product for transformations along the x direction. But the scalar product
is also invariant under rotations, since the first term is not affected at all, and the last
three constitute the three-dimensional dot product a · b. By a suitable rotation, the x
direction can be aimed any way you please, so the four-dimensional scalar product
is actually invariant under arbitrary Lorentz transformations.]

Problem 12.18

(a) Write out the matrix that describes a Galilean transformation (Eq. 12.12).

(b) Write out the matrix describing a Lorentz transformation along the y axis.

(c) Find the matrix describing a Lorentz transformation with velocity v along the
x axis followed by a Lorentz transformation with velocity v̄ along the y axis.
Does it matter in what order the transformations are carried out?

10It doesn’t matter whether you define the scalar product as in Eq. 12.28 (−a0b0 + a · b) or with an
overall minus sign (a0b0 − a · b); if one is invariant, so is the other. In the literature, both conventions
are common, and you just have to be aware of which one is in use. If they write the diagonal compo-
nents of the Minkowski metric as (−, +, +,+), they are using the convention in Eq. 12.28; otherwise
they will write (+, −, −,−).
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Problem 12.19 The parallel between rotations and Lorentz transformations is even
more striking if we introduce the rapidity:

θ ≡ tanh−1(v/c). (12.34)

(a) Express the Lorentz transformation matrix � (Eq. 12.24) in terms of θ , and
compare it to the rotation matrix (Eq. 1.29).

In some respects, rapidity is a more natural way to describe motion than ve-
locity.11 For one thing, it ranges from −∞ to +∞, instead of −c to +c. More
significantly, rapidities add, whereas velocities do not.

(b) Express the Einstein velocity addition law in terms of rapidity.

(ii) The invariant interval. The scalar product of a 4-vector with itself,
aμaμ = −(a0)2 + (a1)2 + (a2)2 + (a3)2, can be positive (if the “spatial” terms
dominate) or negative (if the “temporal” term dominates) or zero:

If aμaμ > 0, aμ is called spacelike.

If aμaμ < 0, aμ is called timelike.

If aμaμ = 0, aμ is called lightlike.

Suppose event A occurs at (x0
A, x1

A, x2
A, x3

A), and event B at (x0
B, x1

B, x2
B, x3

B).
The difference,

�xμ ≡ xμ

A − xμ

B , (12.35)

is the displacement 4-vector. The scalar product of �xμ with itself is called the
invariant interval between two events:

I ≡ (�x)μ(�x)μ = −(�x0)2 + (�x1)2 + (�x2)2 + (�x3)2 = −c2t2 + d2,

(12.36)

where t is the time difference between the two events and d is their spatial sep-
aration. When you transform to a moving system, the time between A and B is
altered (t̄ 	= t), and so is the spatial separation (d̄ 	= d), but the interval I remains
the same.

If the displacement between two events is timelike (I < 0), there exists an
inertial system (accessible by Lorentz transformation) in which they occur at the
same point. For if I hop on a train going from (A) to (B) at the speed v = d/t ,
leaving event A when it occurs, I shall be just in time to pass B when it occurs;
in the train system, A and B take place at the same point. You cannot do this for
a spacelike interval, of course, because v would have to be greater than c, and no
observer can exceed the speed of light (γ would be imaginary and the Lorentz
transformations would be nonsense). On the other hand, if the displacement is
spacelike (I > 0), then there exists a system in which the two events occur at the
same time (see Prob. 12.21). And if the displacement is lightlike (I = 0), then the
two events could be connected by a light signal.

11E. F. Taylor and J. A. Wheeler, Spacetime Physics, 1st ed. (San Francisco: W. H. Freeman, 1966).



12.1 The Special Theory of Relativity 529

Problem 12.20

(a) Event A happens at point (xA = 5, yA = 3, z A = 0) and at time tA given by
ctA = 15; event B occurs at (10, 8, 0) and ctB = 5, both in system S.

(i) What is the invariant interval between A and B?

(ii) Is there an inertial system in which they occur simultaneously? If so, find
its velocity (magnitude and direction) relative to S.

(iii) Is there an inertial system in which they occur at the same point? If so, find
its velocity relative to S.

(b) Repeat part (a) for A = (2, 0, 0), ct = 1; and B = (5, 0, 0), ct = 3.

Problem 12.21 The coordinates of event A are (xA, 0, 0), tA, and the coordinates of
event B are (xB, 0, 0), tB . Assuming the displacement between them is spacelike,
find the velocity of the system in which they are simultaneous.

(iii) Space-time diagrams. If you want to represent the motion of a particle
graphically, the normal practice is to plot the position versus time (that is, x runs
vertically and t horizontally). On such a graph, the velocity can be read off as the
slope of the curve. For some reason, the convention is reversed in relativity: every-
one plots position horizontally and time (or, better, x0 = ct) vertically. Velocity
is then given by the reciprocal of the slope. A particle at rest is represented by a
vertical line; a photon, traveling at the speed of light, is described by a 45◦ line;
and a rocket going at some intermediate speed follows a line of slope c/v = 1/β

(Fig. 12.21). We call such plots Minkowski diagrams.
The trajectory of a particle on a Minkowski diagram is called a world line.

Suppose you set out from the origin at time t = 0. Because no material object
can travel faster than light, your world line can never have a slope less than 1.
Accordingly, your motion is restricted to the wedge-shaped region bounded by
the two 45◦ lines (Fig. 12.22). We call this your “future,” in the sense that it is the

Particle
at rest

PhotonRocket

ct

x

FIGURE 12.21

Your future at t

Your future,
at t = 0

Your past,
at t = 0

Present Present
Your world line

FIGURE 12.22
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locus of all points accessible to you. Of course, as time goes on, and you move
along your chosen world line, your options progressively narrow: your “future”
at any moment is the forward “wedge” constructed at whatever point you find
yourself. Meanwhile, the backward wedge represents your “past,” in the sense
that it is the locus of all points from which you might have come. As for the
rest (the region outside the forward and backward wedges), this is the generalized
“present.” You can’t get there, and you didn’t come from there. In fact, there’s no
way you can influence any event in the present (the message would have to travel
faster than light); it’s a vast expanse of spacetime that is absolutely inaccessible
to you.

I’ve been ignoring the y and z directions. If we include a y axis coming out of
the page, the “wedges” become cones—and, with an undrawable z axis, hyper-
cones. Because their boundaries are the trajectories of light rays, we call them the
forward light cone and the backward light cone. Your future, in other words,
lies within your forward light cone, your past within your backward light cone.

Notice that the slope of the line connecting two events on a space-time dia-
gram tells you at a glance whether the displacement between them is timelike
(slope greater than 1), spacelike (slope less than 1), or lightlike (slope 1). For
example, all points in the past and future are timelike with respect to your present
location, whereas points in the present are spacelike, and points on the light cone
are lightlike.

Hermann Minkowski, who was the first to recognize the full geometrical sig-
nificance of special relativity, began a famous lecture in 1908 with the words,
“Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent
reality.”12 It’s a lovely thought, but you must be careful not to read too much into
it. For it is not at all the case that time is “just another coordinate, on the same
footing with x, y, and z” (except that for obscure reasons we measure it on clocks
instead of rulers). No: Time is utterly different from the others, and the mark of its
distinction is the minus sign in the invariant interval. That minus sign imparts to
spacetime a hyperbolic geometry that is much richer than the circular geometry
of 3-space.

Under rotations about the z axis, a point P in the xy plane describes a circle:
the locus of all points a fixed distance r = √x2 + y2 from the origin (Fig. 12.23).
Under Lorentz transformations, however, it is the interval I = (x2 − c2t2) that is
preserved, and the locus of all points with a given value of I is a hyperbola—or,
if we include the y axis, a hyperboloid of revolution. When the displacement is
timelike, it’s a “hyperboloid of two sheets” (Fig. 12.24a); when the displacement
is spacelike, it’s a “hyperboloid of one sheet” (Fig. 12.24b). When you perform a
Lorentz transformation (that is, when you go into a moving inertial system), the
coordinates (x, t) of a given event will change to (x̄, t̄), but these new coordinates
will lie on the same hyperbola as (x, t). By appropriate combinations of Lorentz
transformations and rotations, a spot can be moved around at will over the surface

12A. Einstein et al., The Principle of Relativity (New York: Dover, 1923), Chapter V.
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y

FIGURE 12.23
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ct

FIGURE 12.24

of a given hyperboloid, but no amount of transformation will carry it, say, from
the upper sheet of the timelike hyperboloid to the lower sheet, or to a spacelike
hyperboloid.

When we were discussing simultaneity, I showed that the time ordering of two
events can, at least in certain cases, be reversed, simply by going into a mov-
ing system. But we now see that this is not always possible: If the displacement
4-vector between two events is timelike, their ordering is absolute; if the interval
is spacelike, their ordering depends on the inertial system from which they are
observed. In terms of the space-time diagram, an event on the upper sheet of a
timelike hyperboloid definitely occurred after (0, 0), and one on the lower sheet
certainly occurred before; but an event on a spacelike hyperboloid occurred at
positive t , or negative t , depending on your reference frame. This is not an idle
curiosity, for it rescues the notion of causality, on which all physics is based. If
it were always possible to reverse the order of two events, then we could never
say “A caused B,” since a rival observer would retort that B preceded A. This
embarrassment is avoided, provided the two events are timelike or lightlike sepa-
rated. And causally related events are—otherwise no influence could travel from
one to the other. Conclusion: The displacement between causally related events is
always timelike, and their temporal ordering is the same for all inertial observers.
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Problem 12.22

(a) Draw a space-time diagram representing a game of catch (or a conversation)
between two people at rest, 10 ft apart. How is it possible for them to commu-
nicate, given that their separation is spacelike?

(b) There’s an old limerick that runs as follows:

There once was a girl named Ms. Bright,
Who could travel much faster than light.
She departed one day,
The Einsteinian way,
And returned on the previous night.

What do you think? Even if she could travel faster than light, could she return before
she set out? Could she arrive at some intermediate destination before she set out?
Draw a space-time diagram representing this trip.

Problem 12.23 Inertial system S̄ moves in the x direction at speed 3
5 c relative to

system S. (The x̄ axis slides long the x axis, and the origins coincide at t = t̄ = 0,
as usual.)

(a) On graph paper set up a Cartesian coordinate system with axes ct and x . Care-
fully draw in lines representing x̄ = −3, −2, −1, 0, 1, 2, and 3. Also draw in
the lines corresponding to ct̄ = −3, −2, −1, 0, 1, 2, and 3. Label your lines
clearly.

(b) In S̄, a free particle is observed to travel from the point x̄ = −2 at time ct̄ = −2
to the point x̄ = 2 at ct̄ = +3. Indicate this displacement on your graph. From
the slope of this line, determine the particle’s speed in S.

(c) Use the velocity addition rule to determine the velocity in S algebraically, and
check that your answer is consistent with the graphical solution in (b).

12.2 RELATIVISTIC MECHANICS

12.2.1 Proper Time and Proper Velocity

As you progress along your world line, your watch runs slow; while the clock on
the wall ticks off an interval dt , your watch only advances dτ :

dτ =
√

1 − u2/c2 dt. (12.37)

(I’ll use u for the velocity of a particular object—you, in this instance—and
reserve v for the relative velocity of two inertial systems.) The time τ your watch
registers (or, more generally, the time associated with the moving object) is called
proper time. (The word suggests a mistranslation of the French “propre”, mean-
ing “own.”) In some cases, τ may be a more relevant or useful quantity than t .
For one thing, proper time is invariant, whereas “ordinary” time depends on the
particular reference frame you have in mind.
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Now, imagine you’re on a flight to Los Angeles, and the pilot announces that
the plane’s velocity is 4

5 c. What precisely does he mean by “velocity”? Well, of
course, he means the displacement divided by the time:

u = dl
dt

, (12.38)

and, since he is presumably talking about the velocity relative to ground, both dl
and dt are to be measured by the ground observer. That’s the important number to
know, if you’re concerned about being on time for an appointment in Los Angeles,
but if you’re wondering whether you’ll be hungry on arrival, you might be more
interested in the distance covered per unit proper time:

η ≡ dl
dτ

. (12.39)

This hybrid quantity (distance measured on the ground, over time measured in the
airplane) is called proper velocity; for contrast, I’ll call u the ordinary velocity.
The two are related by Eq. 12.37:

η = 1√
1 − u2/c2

u. (12.40)

For speeds much less than c, of course, the difference between ordinary and proper
velocity is negligible.

From a theoretical standpoint, however, proper velocity has an enormous ad-
vantage over ordinary velocity: it transforms simply, when you go from one iner-
tial system to another. In fact, η is the spatial part of a 4-vector,

ημ ≡ dxμ

dτ
, (12.41)

whose zeroth component is

η0 = dx0

dτ
= c

dt

dτ
= c√

1 − u2/c2
, (12.42)

for the numerator, dxμ, is a displacement 4-vector, while the denominator, dτ , is
invariant. Thus, for instance, when you go from system S to system S̄ , moving at
speed v along the common x x̄ axis,

η̄0 = γ (η0 − βη1),

η̄1 = γ (η1 − βη0),

η̄2 = η2,

η̄3 = η3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.43)
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More generally,

η̄μ = �μ
ν ην; (12.44)

ημ is called the proper velocity 4-vector, or simply the 4-velocity.
By contrast, the transformation rule for ordinary velocities is quite cumber-

some, as we found in Ex. 12.6 and Prob. 12.14:

ūx = dx̄

dt̄
= ux − v

(1 − vux/c2)
,

ū y = d ȳ

dt̄
= uy

γ (1 − vux/c2)
,

ūz = dz̄

dt̄
= uz

γ (1 − vux/c2)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.45)

The reason for the added complexity is plain: we’re obliged to transform both the
numerator dl and the denominator dt , whereas for proper velocity, the denomi-
nator dτ is invariant, so the ratio inherits the transformation rule of the numerator
alone.

Problem 12.24

(a) Equation 12.40 defines proper velocity in terms of ordinary velocity. Invert that
equation to get the formula for u in terms of η.

(b) What is the relation between proper velocity and rapidity (Eq. 12.34)? Assume
the velocity is along the x direction, and find η as a function of θ .

Problem 12.25 A car is traveling along the 45◦ line in S (Fig. 12.25), at (ordinary)
speed (2/

√
5)c.

(a) Find the components ux and uy of the (ordinary) velocity.

(b) Find the components ηx and ηy of the proper velocity.

(c) Find the zeroth component of the 4-velocity, η0.

System S̄ is moving in the x direction with (ordinary) speed
√

2/5 c, relative
to S. By using the appropriate transformation laws:

(d) Find the (ordinary) velocity components ūx and ū y in S̄.

x

y

45°

2
5

c

FIGURE 12.25
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(e) Find the proper velocity components η̄x and η̄y in S̄.

(f) As a consistency check, verify that

η̄ = ū√
1 − ū2/c2

.

Problem 12.26 Find the invariant product of the 4-velocity with itself, ημημ. Is ημ•
timelike, spacelike, or lightlike?

Problem 12.27 A cop pulls you over and asks what speed you were going. “Well,
officer, I cannot tell a lie: the speedometer read 4 × 108 m/s.” He gives you a ticket,
because the speed limit on this highway is 2.5 × 108 m/s. In court, your lawyer
(who, luckily, has studied physics) points out that a car’s speedometer measures
proper velocity, whereas the speed limit is ordinary velocity. Guilty, or innocent?

Problem 12.28 Consider a particle in hyperbolic motion,

x(t) =
√

b2 + (ct)2 , y = z = 0.

(a) Find the proper time τ as a function of t , assuming the clocks are set so that
τ = 0 when t = 0. [Hint: Integrate Eq. 12.37.]

(b) Find x and v (ordinary velocity) as functions of τ .

(c) Find ημ (proper velocity) as a function of τ .

12.2.2 Relativistic Energy and Momentum

In classical mechanics, momentum is mass times velocity. I would like to ex-
tend this definition to the relativistic domain, but immediately a question arises:
Should I use ordinary velocity or proper velocity? In classical physics, η and u
are identical, so there is no a priori reason to favor one over the other. However,
in the context of relativity it is essential that we use proper velocity, for the law of
conservation of momentum would be inconsistent with the principle of relativity
if we were to define momentum as mu (see Prob. 12.29). Thus

p ≡ mη = mu√
1 − u2/c2

; (12.46)

this is the relativistic momentum of an object of mass m traveling at (ordinary)
velocity u.13

Relativistic momentum is the spatial part of a 4-vector,

pμ ≡ mημ, (12.47)

13Older treatments introduce the so-called relativistic mass, mr ≡ m/
√

1 − u2/c2, so p can be writ-
ten as mr u, but this unhelpful extra terminology has gone the way of the two-dollar bill.
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and it is natural to ask what the temporal component,

p0 = mη0 = mc√
1 − u2/c2

(12.48)

represents. Einstein identified p0c as relativistic energy:

E ≡ mc2√
1 − u2/c2

; (12.49)

pμ is called the energy-momentum 4-vector (or the momentum 4-vector, for
short).

Notice that the relativistic energy is nonzero even when the object is stationary;
we call this rest energy:

Erest ≡ mc2. (12.50)

The remainder, which is attributable to the motion, is kinetic energy

Ekin ≡ E − mc2 = mc2

(
1√

1 − u2/c2
− 1

)
. (12.51)

In the nonrelativistic régime (u � c) the square root can be expanded in powers
of u2/c2, giving

Ekin = 1

2
mu2 + 3

8

mu4

c2
+ · · · ; (12.52)

the leading term reproduces the classical formula.
So far, this is all just notation. The physics resides in the experimental fact that

E and p, as defined by Eqs. 12.46 and 12.49, are conserved:

In every closed14 system, the total relativistic energy and momen-
tum are conserved.

Mass is not conserved—a fact that has been painfully familiar to everyone since
1945 (though the so-called “conversion of mass into energy” is really a conversion
of rest energy into kinetic energy).

Note the distinction between an invariant quantity (same value in all inertial
systems) and a conserved quantity (same value before and after some process).
Mass is invariant but not conserved; energy is conserved but not invariant; electric
charge is both conserved and invariant; velocity is neither conserved nor invariant.

The scalar product of pμ with itself is

pμ pμ = −(p0)2 + (p · p) = −m2c2, (12.53)

14If there are external forces at work, then (just as in the classical case) the energy and momentum of
the system itself will not, in general, be conserved.
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as you can quickly check using the result of Prob. 12.26. In terms of the relativistic
energy and momentum,

E2 − p2c2 = m2c4. (12.54)

This result is extremely useful, for it enables you to calculate E (if you know
p ≡ |p|), or p (knowing E), without ever having to determine the velocity.15

Problem 12.29

(a) Repeat Prob. 12.2(a) using the (incorrect) definition p = mu, but with the (cor-
rect) Einstein velocity addition rule. Notice that if momentum (so defined) is
conserved in S, it is not conserved in S̄. Assume all motion is along the x axis.

(b) Now do the same using the correct definition, p = mη. Notice that if momentum
(so defined) is conserved in S, it is automatically also conserved in S̄. [Hint:
Use Eq. 12.43 to transform the proper velocity.] What must you assume about
relativistic energy?

Problem 12.30 If a particle’s kinetic energy is n times its rest energy, what is its
speed?

Problem 12.31 Suppose you have a collection of particles, all moving in the x
direction, with energies E1, E2, E3, . . . and momenta p1, p2, p3, . . . . Find the ve-
locity of the center of momentum frame, in which the total momentum is zero.

12.2.3 Relativistic Kinematics

In this section we’ll explore some applications of the conservation laws.

Example 12.7. Two lumps of clay, each of (rest) mass m, collide head-on at 3
5 c

(Fig. 12.26). They stick together. Question: what is the mass (M) of the composite
lump?

3/5 c

m M

3/5 c

m

(before) (after)

FIGURE 12.26

15Equations 12.53 and 12.54 apply to a single particle of mass m. If you’re talking about the total
energy and momentum of a collection of particles, pμ pμ is still an invariant, and you can use it to
define the so-called invariant mass (−pμ pμ/c2) of the system, but this will not (in general) be the
sum of the individual masses.
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Solution
In this case conservation of momentum is trivial: zero before, zero after. The
energy of each lump prior to the collision is

mc2√
1 − (3/5)2

= 5

4
mc2,

and the energy of the composite lump after the collision is Mc2 (since it’s at rest).
So conservation of energy says

5

4
mc2 + 5

4
mc2 = Mc2,

and hence

M = 5

2
m.

Notice that this is greater than the sum of the initial masses! Mass was not con-
served in this collision; kinetic energy was converted into rest energy, so the mass
increased.

In the classical analysis of such a collision, we say that kinetic energy was
converted into thermal energy—the composite lump is hotter than the two col-
liding pieces. This is, of course, true in the relativistic picture too. But what is
thermal energy? It’s the sum total of the random kinetic and potential energies of
all the atoms and molecules in the substance. Relativity tells us that these internal
energies are represented in the mass of the composite object: a hot potato is heav-
ier than a cold potato, and a compressed spring is heavier than a relaxed spring.
Not by much, it’s true—internal energy (U ) contributes an amount U/c2 to the
mass, and c2 is a very large number by everyday standards. You could never get
two lumps of clay going anywhere near fast enough to detect the nonconservation
of mass in their collision. But in the realm of elementary particles, the effect can
be very striking. For example, when the neutral pi meson (mass 2.4 × 10−28 kg)
decays into an electron and a positron (each of mass 9.11 × 10−31 kg), the rest
energy is converted almost entirely into kinetic energy—less than 1% of the orig-
inal mass remains.

In classical mechanics, there’s no such thing as a massless (m = 0) particle—
its kinetic energy ( 1

2 mu2) and its momentum (mu) would be zero, you couldn’t
apply a force to it (F = ma), and hence (by Newton’s third law) it couldn’t ex-
ert a force on anything else—it’s a cipher, as far as physics is concerned. You
might at first assume that the same is true in relativity; after all, p and E are still
proportional to m. However, a closer inspection of Eqs. 12.46 and 12.49 reveals
a loophole worthy of a congressman: If u = c, then the zero in the numerator
is balanced by a zero in the denominator, leaving p and E indeterminate (zero
over zero). It is just conceivable, therefore, that a massless particle could carry
energy and momentum, provided it always travels at the speed of light. Although
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Eqs. 12.46 and 12.49 would no longer suffice to determine E and p, Eq. 12.54
suggests that the two should be related by

E = pc. (12.55)

Personally, I would regard this argument as a joke, were it not for the fact that
at least one massless particle is known to exist in nature: the photon.16 Photons do
travel at the speed of light, and they obey Eq. 12.55.17 They force us to take the
“loophole” seriously. (By the way, you might ask what distinguishes a photon with
a lot of energy from one with very little—after all, they have the same mass (zero)
and the same speed (c). Relativity offers no answer to this question; curiously,
quantum mechanics does: According to the Planck formula, E = hν, where h is
Planck’s constant and ν is the frequency. A blue photon is more energetic than a
red one!)

Example 12.8. A pion at rest decays into a muon and a neutrino (Fig. 12.27).
Find the energy of the outgoing muon, in terms of the two masses, mπ and mμ

(assume mν = 0).

v
π

(before) (after)

μ

FIGURE 12.27

Solution
In this case,

Ebefore = mπc2, pbefore = 0,

Eafter = Eμ + Eν, pafter = pμ + pν .

Conservation of momentum requires that pν = −pμ. Conservation of energy says
that

Eμ + Eν = mπc2.

Now, Eν = |pν |c, by Eq. 12.55, whereas |pμ| =
√

E2
μ − m2

μc4 /c, by Eq. 12.54, so

Eμ +
√

E2
μ − m2

μc4 = mπc2,

16Until recently, neutrinos were also assumed to be massless, but experiments in 1998 indicate that
they in fact carry a (very small) mass.
17The photon is the quantum of the electromagnetic field, and it is no accident that the same ratio
between energy and momentum holds for electromagnetic waves (see Eqs. 9.60 and 9.62).
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from which it follows that

Eμ = (m2
π + m2

μ)c2

2mπ

.

In a classical collision, momentum and mass are always conserved, whereas
kinetic energy, in general, is not. A “sticky” collision generates heat at the expense
of kinetic energy; an “explosive” collision generates kinetic energy at the expense
of chemical energy (or some other kind). If the kinetic energy is conserved, as
in the ideal collision of the two billiard balls, we call the process “elastic.” In
the relativistic case, momentum and total energy are always conserved, but mass
and kinetic energy, in general, are not. Once again, we call the process elastic if
kinetic energy is conserved. In such a case the rest energy (being the total minus
the kinetic) is also conserved, and therefore so too is the mass. In practice, this
means that the same particles come out as went in. Examples 12.7 and 12.8 were
inelastic processes; the next one is elastic.

Example 12.9. Compton scattering. A photon of energy E0 “bounces” off an
electron, initially at rest. Find the energy E of the outgoing photon, as a function
of the scattering angle θ (see Fig. 12.28).

(before)

Electron

E0

Photon

(after)

θ
E

Electron

Photon

φ

FIGURE 12.28

Solution
Conservation of momentum in the “vertical” direction gives pe sin φ = pp sin θ ,
or, since pp = E/c,

sin φ = E

pec
sin θ.

Conservation of momentum in the “horizontal” direction gives

E0

c
= pp cos θ + pe cos φ = E

c
cos θ + pe

√
1 −

(
E

pec
sin θ

)2

,
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or

p2
e c2 = (E0 − E cos θ)2 + E2 sin2 θ = E2

0 − 2E0 E cos θ + E2.

Finally, conservation of energy says that

E0 + mc2 = E + Ee = E +√m2c4 + p2
e c2

= E +
√

m2c4 + E2
0 − 2E0 E cos θ + E2.

Solving for E , I find that

E = 1

(1 − cos θ) /mc2 + (1/E0)
. (12.56)

The answer looks nicer when expressed in terms of photon wavelength:

E = hν = hc

λ
,

so

λ = λ0 + h

mc
(1 − cos θ). (12.57)

The quantity (h/mc) is called the Compton wavelength of the electron.

Problem 12.32 Find the velocity of the muon in Ex. 12.8.

Problem 12.33 A particle of mass m whose total energy is twice its rest energy
collides with an identical particle at rest. If they stick together, what is the mass of
the resulting composite particle? What is its velocity?

Problem 12.34 A neutral pion of (rest) mass m and (relativistic) momentum p =
3
4 mc decays into two photons. One of the photons is emitted in the same direction
as the original pion, and the other in the opposite direction. Find the (relativistic)
energy of each photon.

Problem 12.35 In the past, most experiments in particle physics involved stationary
targets: one particle (usually a proton or an electron) was accelerated to a high
energy E , and collided with a target particle at rest (Fig. 12.29a). Far higher relative
energies are obtainable (with the same accelerator) if you accelerate both particles to
energy E , and fire them at each other (Fig. 12.29b). Classically, the energy Ē of one
particle, relative to the other, is just 4E (why?) . . . not much of a gain (only a factor
of 4). But relativistically the gain can be enormous. Assuming the two particles have
the same mass, m, show that

Ē = 2E2

mc2
− mc2. (12.58)
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E Target E E

(a) (b)

FIGURE 12.29

Suppose you use protons (mc2 = 1 GeV) with E = 30 GeV. What Ē do you get?
What multiple of E does this amount to? (1 GeV=109 electron volts.) [Because of
this relativistic enhancement, most modern elementary particle experiments involve
colliding beams, instead of fixed targets.]

Problem 12.36 In a pair annihilation experiment, an electron (mass m) with mo-
mentum pe hits a positron (same mass, but opposite charge) at rest. They annihilate,
producing two photons. (Why couldn’t they produce just one photon?) If one of the
photons emerges at 60◦ to the incident electron direction, what is its energy?

12.2.4 Relativistic Dynamics

Newton’s first law is built into the principle of relativity. His second law, in the
form

F = dp
dt

, (12.59)

retains its validity in relativistic mechanics, provided we use the relativistic mo-
mentum.

Example 12.10. Motion under a constant force. A particle of mass m is subject
to a constant force F . If it starts from rest at the origin, at time t = 0, find its
position (x), as a function of time.

Solution

dp

dt
= F ⇒ p = Ft + constant,

but since p = 0 at t = 0, the constant must be zero, and hence

p = mu√
1 − u2/c2

= Ft.

Solving for u, we obtain

u = (F/m)t√
1 + (Ft/mc)2

. (12.60)

The numerator, of course, is the classical answer—it’s approximately right, if
(F/m)t � c. But the relativistic denominator ensures that u never exceeds c; in
fact, as t → ∞, u → c.
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To complete the problem we must integrate again:

x(t) = F

m

∫ t

0

t ′√
1 + (Ft ′/mc)2

dt ′

= mc2

F

√
1 + (Ft ′/mc)2

∣∣∣t
0

= mc2

F

[√
1 + (Ft/mc)2 − 1

]
. (12.61)

In place of the classical parabola, x(t) = (F/2m)t2, the graph is a hyperbola
(Fig. 12.30); for this reason, motion under a constant force is often called
hyperbolic motion. It occurs, for example, when a charged particle is placed
in a uniform electric field.

ct

x

45°

Classical
(parabola)

Relativistic
(hyperbola)

FIGURE 12.30

Work, as always, is the line integral of the force:

W ≡
∫

F · dl. (12.62)

The work-energy theorem (“the net work done on a particle equals the increase
in its kinetic energy”) holds relativistically:

W =
∫

dp
dt

· dl =
∫

dp
dt

· dl
dt

dt =
∫

dp
dt

· u dt,

while

dp
dt

· u = d

dt

(
mu√

1 − u2/c2

)
· u

= mu
(1 − u2/c2)3/2

· du
dt

= d

dt

(
mc2√

1 − u2/c2

)
= d E

dt
, (12.63)
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so

W =
∫

d E

dt
dt = Efinal − Einitial. (12.64)

(Since the rest energy is constant, it doesn’t matter whether we use the total en-
ergy, here, or the kinetic energy.)

Unlike the first two, Newton’s third law does not, in general, extend to the
relativistic domain. Indeed, if the two objects in question are separated in space,
the third law is incompatible with the relativity of simultaneity. For suppose the
force of A on B at some instant t is F(t), and the force of B on A at the same in-
stant is −F(t); then the third law applies in this reference frame. But a moving
observer will report that these equal and opposite forces occurred at different
times; in his system, therefore, the third law is violated. Only in the case of con-
tact interactions, where the two forces are applied at the same physical point (and
in the trivial case where the forces are constant) can the third law be retained.

Because F is the derivative of momentum with respect to ordinary time, it
shares the ugly behavior of (ordinary) velocity, when you go from one inertial
system to another: both the numerator and the denominator must be transformed.
Thus,18

F̄y = d p̄y

dt̄
= dpy

γ dt − γβ

c
dx

= dpy/dt

γ

(
1 − β

c

dx

dt

) = Fy

γ (1 − βux/c)
, (12.65)

and similarly for the z component:

F̄z = Fz

γ (1 − βux/c)
.

The x component is even worse:

F̄x = d p̄x

dt̄
= γ dpx − γβ dp0

γ dt − γβ

c
dx

=
dpx

dt
− β

dp0

dt

1 − β

c

dx

dt

=
Fx − β

c

(
d E

dt

)

1 − βux/c
.

We calculated d E/dt in Eq. 12.63; putting that in,

F̄x = Fx − β(u · F)/c

1 − βux/c
. (12.66)

In one special case these equations are reasonably tractable: If the particle is (in-
stantaneously) at rest in S, so that u = 0, then

F̄⊥ = 1

γ
F⊥, F̄‖ = F‖. (12.67)

18Remember: γ and β pertain to the motion of S̄ with respect S—they are constants; u is the velocity
of the particle with respect to S.
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That is, the component of F parallel to the motion of S̄ is unchanged, whereas
perpendicular components are divided by γ .

It has perhaps occurred to you that we could avoid the bad transformation
behavior of F by introducing a “proper” force, analogous to proper velocity, which
would be the derivative of momentum with respect to proper time:

K μ ≡ dpμ

dτ
. (12.68)

This is called the Minkowski force; it is plainly a 4-vector, since pμ is a 4-vector
and proper time is invariant. The spatial components of K μ are related to the
“ordinary” force by

K =
(

dt

dτ

)
dp
dt

= 1√
1 − u2/c2

F, (12.69)

while the zeroth component,

K 0 = dp0

dτ
= 1

c

d E

dτ
, (12.70)

is, apart from the 1/c, the (proper) rate at which the energy of the particle
increases—in other words, the (proper) power delivered to the particle.

Relativistic dynamics can be formulated in terms of the ordinary force or in
terms of the Minkowski force. The latter is generally much neater, but since in
the long run we are interested in the particle’s trajectory as a function of ordinary
time, the former is often more useful. When we wish to generalize some classical
force law, such as Lorentz’s, to the relativistic domain, the question arises: Does
the classical formula correspond to the ordinary force or to the Minkowski force?
In other words, should we write

F = q(E + u × B),

or should it rather be

K = q(E + u × B)?

Since proper time and ordinary time are identical in classical physics, there is
no way at this stage to decide the issue. The Lorentz force, as it turns out, is an
ordinary force—later on I’ll explain why this is so, and show you how to construct
the electromagnetic Minkowski force.

Example 12.11. The typical trajectory of a charged particle in a uniform mag-
netic field is cyclotron motion (Fig. 12.31). The magnetic force pointing toward
the center,

F = Qu B,
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B
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dp p + dpp

p

FIGURE 12.32

provides the centripetal acceleration necessary to sustain circular motion. Beware,
however—in special relativity the centripetal force is not mu2/R, as in classical
mechanics. Rather, as you can see from Fig. 12.32, dp = p dθ , so

F = dp

dt
= p

dθ

dt
= p

u

R
.

(Classically, of course, p = mu, so F = mu2/R.) Thus,

Qu B = p
u

R
,

or

p = Q B R. (12.71)

In this form, the relativistic cyclotron formula is identical to the nonrelativistic
one, Eq. 5.3—the only difference is that p is now the relativistic momentum.

In classical mechanics, the total momentum (P) of a collection of interacting
particles can be expressed as the total mass (M) times the velocity of the center-
of-mass:

P = M
dRm

dt
.

In relativity the center-of-mass (Rm = 1
M

∑
mi ri ) is replaced by the center-of-

energy (Re = 1
E

∑
Ei ri , where E is the total energy), and M by E/c2:

P = E

c2

dRe

dt
. (12.72)

P now includes all forms of momentum, and E all forms of energy—not just
mechanical, but also whatever may be stored in the fields.19

19The proof of Eq. 12.72 is not trivial. See S. Coleman and J. H. Van Vleck, Phys. Rev. 171, 1370
(1968) or M. G. Calkin, Am. J. Phys. 39, 513 (1971).
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Example 12.12. In Example 8.3 we found that the momentum stored in the
fields of a coaxial cable is not zero, even though the cable itself is at rest. At
the time, this seemed paradoxical. However, energy is being transported, from
the battery to the resistor, and hence the center-of-energy is in motion. Indeed, if
the battery is at z = 0, so the resistor is at z = l, then Re = (E0R0 + ERl ẑ)/E ,
where ER is the energy in the resistor, E0 is the rest of the energy, and R0 is the
center-of-energy of E0, so

dRe

dt
= (d ER/dt)l

E
ẑ = I V l

E
ẑ.

According to Eq. 12.72, then, the total momentum should be

P = I V l

c2
ẑ,

which is exactly the momentum in the fields, as calculated in Example 8.3.
If this still seems strange to you, imagine a shoe-box, with a marble inside that

we cannot see. The box is at rest, but the marble is rolling from one end to the
other. Is there momentum in this system? Yes, of course, even though the box is
stationary—there is the momentum of the marble. In the case of the coaxial cable,
no actual object is in motion (well, the electrons are, but there are just as many of
them going one way as the other, and their net momentum is zero), but energy is
flowing from one end to the other, and in relativity all forms of energy in motion,
not just rest energy (mass), constitute momentum. The “marble” (in this analogy)
is the electromagnetic field, which transports energy, and therefore contributes
momentum . . . even though the fields themselves are perfectly static! 20

In the following example, the center of energy is at rest, so the total momentum
must be zero (Eq. 12.72). But the (static) electromagnetic fields do carry momen-
tum, and the problem is to locate the compensating mechanical momentum.

Example 12.13. As a model for a magnetic dipole m, consider a rectangular
loop of wire carrying a steady current I . Picture the current as a stream of non-
interacting positive charges that move freely within the wire. When a uniform
electric field E is applied (Fig. 12.33), the charges accelerate in the left segment
and decelerate in the right one.21 Find the total momentum of all the charges in
the loop.

Solution
The momenta of the left and right segments cancel, so we need only consider the
top and the bottom. Say there are N+ charges in the top segment, going at speed

20This problem was incorrectly analyzed in the third edition—see T. H. Boyer, Am. J. Phys. 76, 190
(2008).
21This is not a very realistic model for a current-carrying wire, obviously, but other models lead to
exactly the same result. See V. Hnizdo, Am. J. Phys. 65, 92 (1997).
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u+

Ew
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FIGURE 12.33

u+ to the right, and N− charges in the lower segment, going at (slower) speed u−
to the left. The current (I = λu) is the same in all four segments (or else charge
would be piling up somewhere); in particular,

I = QN+
l

u+ = QN−
l

u−, so N±u± = I l

Q
,

where Q is the charge of each particle, and l is the length of the rectangle. Clas-
sically, the momentum of a single particle is p = Mu (where M is its mass), and
the total momentum (to the right) is

pclassical = M N+u+ − M N−u− = M
Il

Q
− M

Il

Q
= 0,

as one would certainly expect (after all, the loop as a whole is not moving). But
relativistically, p = γ Mu, and we get

p = γ+M N+u+ − γ−M N−u− = M Il

Q
(γ+ − γ−),

which is not zero, because the particles in the upper segment are moving faster.
In fact, the gain in energy (γ Mc2), as a particle goes up the left segment, is

equal to the work done by the electric force, QEw, where w is the height of the
rectangle, so

γ+ − γ− = QEw

Mc2
,

and hence

p = I l Ew

c2
.

But I lw is the magnetic dipole moment of the loop; as vectors, m points into the
page and p is to the right, so

p = 1

c2
(m × E). (12.73)
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Thus a magnetic dipole at rest in an electric field carries linear momentum, even
though it is not moving! This so-called hidden momentum is strictly relativistic,
and purely mechanical; it precisely cancels the electromagnetic momentum stored
in the fields (Eq. 8.45).22

Problem 12.37 In classical mechanics, Newton’s law can be written in the more
familiar form F = ma. The relativistic equation, F = dp/dt , cannot be so simply
expressed. Show, rather, that

F = m√
1 − u2/c2

[
a + u(u · a)

c2 − u2

]
, (12.74)

where a ≡ du/dt is the ordinary acceleration.

Problem 12.38 Show that it is possible to outrun a light ray, if you’re given a suffi-
cient head start, and your feet generate a constant force.

Problem 12.39 Define proper acceleration in the obvious way:

αμ ≡ dημ

dτ
= d2xμ

dτ 2
. (12.75)

(a) Find α0 and ααα in terms of u and a (the ordinary acceleration).

(b) Express αμαμ in terms of u and a.

(c) Show that ημαμ = 0.

(d) Write the Minkowski version of Newton’s second law, Eq. 12.68, in terms of
αμ. Evaluate the invariant product K μημ.

Problem 12.40 Show that

KμK μ = 1 − (u2/c2) cos2 θ

1 − u2/c2
F2,

where θ is the angle between u and F.

Problem 12.41 Show that the (ordinary) acceleration of a particle of mass m and
charge q, moving at velocity u under the influence of electromagnetic fields E and
B, is given by

a = q

m

√
1 − u2/c2

[
E + u × B − 1

c2
u(u · E)

]
.

[Hint: Use Eq. 12.74.]

22For more on hidden momentum, look again at Problem 8.6, and the reference cited there.



550 Chapter 12 Electrodynamics and Relativity

12.3 RELATIVISTIC ELECTRODYNAMICS

12.3.1 Magnetism as a Relativistic Phenomenon

Unlike Newtonian mechanics, classical electrodynamics is already consistent
with special relativity. Maxwell’s equations and the Lorentz force law can be ap-
plied legitimately in any inertial system. Of course, what one observer interprets
as an electrical process another may regard as magnetic, but the actual particle
motions they predict will be identical. To the extent that this did not work out
for Lorentz and others, who studied the question in the late nineteenth century,
the fault lay with the nonrelativistic mechanics they used, not with the electro-
dynamics. Having corrected Newtonian mechanics, we are now in a position to
develop a complete and consistent formulation of relativistic electrodynamics.
I emphasize that we will not be changing the rules of electrodynamics in the
slightest—rather, we will be expressing these rules in a notation that exposes and
illuminates their relativistic character. As we go along, I shall pause now and then
to rederive, using the Lorentz transformations, results obtained earlier by more
laborious means. But the main purpose of this section is to provide you with a
deeper understanding of the structure of electrodynamics—laws that had seemed
arbitrary and unrelated before take on a kind of coherence and inevitability when
approached from the point of view of relativity.

To begin with, I’d like to show you why there had to be such a thing as mag-
netism, given electrostatics and relativity, and how, in particular, you can calculate
the magnetic force between a current-carrying wire and a moving charge with-
out ever invoking the laws of magnetism.23 Suppose you had a string of positive
charges moving along to the right at speed v. I’ll assume the charges are close
enough together so that we may treat them as a continuous line charge λ. Super-
imposed on this positive string is a negative one, −λ proceeding to the left at the
same speed v. We have, then, a net current to the right, of magnitude

I = 2λv. (12.76)

Meanwhile, a distance s away there is a point charge q traveling to the right
at speed u < v (Fig. 12.34a). Because the two line charges cancel, there is no
electrical force on q in this system (S).

However, let’s examine the same situation from the point of view of system S̄,
which moves to the right with speed u (Fig. 12.34b). In this reference frame, q
is at rest. By the Einstein velocity addition rule, the velocities of the positive and
negative lines are now

v± = v ∓ u

1 ∓ vu/c2
. (12.77)

23This and several other arguments in this section are adapted from E. M. Purcell’s Electricity and
Magnetism, 2d ed. (New York: McGraw-Hill, 1985).
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Because v− is greater than v+, the Lorentz contraction of the spacing between
negative charges is more severe than that between positive charges; in this frame,
therefore, the wire carries a net negative charge! In fact,

λ± = ±(γ±)λ0, (12.78)

where

γ± = 1√
1 − v2±/c2

, (12.79)

and λ0 is the charge density of the positive line in its own rest system. That’s not
the same as λ, of course—in S they’re already moving at speed v, so

λ = γ λ0, (12.80)

where

γ = 1√
1 − v2/c2

. (12.81)
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It takes some algebra to put γ± into simple form:

γ± = 1√
1 − 1

c2 (v ∓ u)2(1 ∓ vu/c2)−2
= c2 ∓ uv√

(c2 ∓ uv)2 − c2(v ∓ u)2

= c2 ∓ uv√
(c2 − v2)(c2 − u2)

= γ
1 ∓ uv/c2√
1 − u2/c2

. (12.82)

The net line charge in S̄, then, is

λtot = λ+ + λ− = λ0(γ+ − γ−) = −2λuv

c2
√

1 − u2/c2
. (12.83)

Conclusion: As a result of unequal Lorentz contraction of the positive and nega-
tive lines, a current-carrying wire that is electrically neutral in one inertial system
will be charged in another.

Now, a line charge λtot sets up an electric field

E = λtot

2πε0s
,

so there is an electrical force on q in S̄ , to wit:

F̄ = q E = − λv

πε0c2s

qu√
1 − u2/c2

. (12.84)

But if there’s a force on q in S̄ , there must be one in S; in fact, we can calculate
it by using the transformation rules for forces. Since q is at rest in S̄, and F̄ is
perpendicular to u, the force in S is given by Eq. 12.67:

F =
√

1 − u2/c2 F̄ = − λv

πε0c2

qu

s
. (12.85)

The charge is attracted toward the wire by a force that is purely electrical in S̄
(where the wire is charged, and q is at rest), but distinctly nonelectrical in S
(where the wire is neutral). Taken together, then, electrostatics and relativity im-
ply the existence of another force. This “other force” is, of course, magnetic. In
fact, we can cast Eq. 12.85 into more familiar form by using c2 = (ε0μ0)

−1 and
expressing λv in terms of the current (Eq. 12.76):

F = −qu

(
μ0 I

2πs

)
. (12.86)

The term in parentheses is the magnetic field of a long straight wire, and the
force is precisely what we would have obtained by using the Lorentz force law in
system S.
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12.3.2 How the Fields Transform

We have learned, in various special cases, that one observer’s electric field is
another’s magnetic field. It would be nice to know the general transformation
rules for electromagnetic fields: Given the fields in S, what are the fields in S̄?
Your first guess might be that E is the spatial part of one 4-vector and B the
spatial part of another. But your guess would be wrong—it’s more complicated
than that. Let me begin by making explicit an assumption that was already used
implicitly in Sect. 12.3.1: Charge is invariant. Like mass, but unlike energy, the
charge of a particle is a fixed number, independent of how fast it happens to be
moving. We shall assume also that the transformation rules are the same no matter
how the fields were produced—electric fields associated with changing magnetic
fields transform the same way as those set up by stationary charges. Were this
not the case we’d have to abandon the field formulation altogether, for it is the
essence of a field theory that the fields at a given point tell you all there is to know,
electromagnetically, about that point; you do not have to append extra information
regarding their source.

With this in mind, consider the simplest possible electric field: the uni-
form field in the region between the plates of a large parallel-plate capacitor
(Fig. 12.35a). Say the capacitor is at rest in S0 and carries surface charges ±σ0.
Then

E0 = σ0

ε0
ŷ. (12.87)
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FIGURE 12.35
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What if we examine this same capacitor from system S, moving to the right at
speed v0 (Fig. 12.35b)? In this system the plates are moving to the left, but the
field still takes the form

E = σ

ε0
ŷ; (12.88)

the only difference is the value of the surface charge σ . [Wait a minute! Is that the
only difference? The formula E = σ/ε0 for a parallel plate capacitor came from
Gauss’s law, and whereas Gauss’s law is perfectly valid for moving charges, this
application also relies on symmetry. Are we sure that the field is still perpendicular
to the plates? What if the field of a moving plane tilts, say, along the direction of
motion, as in Fig. 12.35c? Well, even if it did (it doesn’t), the field between the
plates, being the superposition of the +σ field and the −σ field, would still run
perpendicular to the plates (changing the sign of the charge reverses the direction
of the field, and the vector sum kills off the parallel components).]

Now, the total charge on each plate is invariant, and the width (w) is un-
changed, but the length (l) is Lorentz-contracted by a factor of

γ0 = 1√
1 − v2

0/c2
, (12.89)

so the charge per unit area is increased by a factor of γ0:

σ = γ0σ0. (12.90)

Accordingly,

E⊥ = γ0E0
⊥. (12.91)

I have put in the superscript ⊥ to make it clear that this rule pertains to com-
ponents of E that are perpendicular to the direction of motion of S. To get the
rule for parallel components, consider the capacitor lined up with the y z plane

y

x

l

w

z

d

−σ+σ

FIGURE 12.36
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(Fig. 12.36). This time it is the plate separation (d) that is Lorentz-contracted,
whereas l and w (and hence also σ ) are the same in both frames. Since the field
does not depend on d, it follows that

E‖ = E0
‖. (12.92)

Example 12.14. Electric field of a point charge in uniform motion. A point
charge q is at rest at the origin in system S0. Question: What is the electric field
of this same charge in system S, which moves to the right at speed v0 relative
to S0?

Solution
In S0, the field is

E0 = 1

4πε0

q

r2
0

r̂0,

or
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex 0 = 1

4πε0

qx0

(x2
0 + y2

0 + z2
0)

3/2
,

Ey0 = 1

4πε0

qy0

(x2
0 + y2

0 + z2
0)

3/2
,

Ez0 = 1

4πε0

qz0

(x2
0 + y2

0 + z2
0)

3/2
.

From the transformation rules (Eqs. 12.91 and 12.92), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex = Ex 0 = 1

4πε0

qx0

(x2
0 + y2

0 + z2
0)

3/2
,

Ey = γ0 Ey0 = 1

4πε0

γ0qy0

(x2
0 + y2

0 + z2
0)

3/2
,

Ez = γ0 Ez0 = 1

4πε0

γ0qz0

(x2
0 + y2

0 + z2
0)

3/2
.

These are still expressed in terms of the S0 coordinates (x0, y0, z0) of the field
point (P); I’d prefer to write them in terms of the S coordinates of P . From the
Lorentz transformations (or, actually, the inverse transformations),

⎧⎨
⎩

x0 = γ0(x + v0t) = γ0 Rx ,

y0 = y = Ry,

z0 = z = Rz,
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where R is the vector from q to P (Fig. 12.37). Thus

E= 1

4πε0

γ0qR

(γ 2
0 R2 cos2 θ + R2 sin2 θ)3/2

= 1

4πε0

q(1 − v2
0/c2)

[1 − (v2
0/c2) sin2 θ ]3/2

R̂
R2

. (12.93)

This, then, is the field of a charge in uniform motion; we got the same result in
Chapter 10 using the retarded potentials (Eq. 10.75). The present derivation is far
more efficient, and sheds some light on the remarkable fact that the field points
away from the instantaneous (as opposed to the retarded) position of the charge:
Ex gets a factor of γ0 from the Lorentz transformation of the coordinates; Ey and
Ez pick up theirs from the transformation of the field. It’s the balancing of these
two γ0’s that leaves E parallel to R.

But Eqs. 12.91 and 12.92 are not the most general transformation laws, for we
began with a system S0 in which the charges were at rest and where, consequently,
there was no magnetic field. To derive the general rule, we must start out in a
system with both electric and magnetic fields. For this purpose S itself will serve
nicely. In addition to the electric field

Ey = σ

ε0
, (12.94)

there is a magnetic field due to the surface currents (Fig. 12.35b):

K± = ∓σv0 x̂. (12.95)

By the right-hand rule, this field points in the negative z direction; its magnitude
is given by Ampère’s law (Ex. 5.8):

Bz = −μ0σv0. (12.96)

In a third system, S̄, traveling to the right with speed v relative to S (Fig. 12.38),
the fields would be

Ēy = σ̄

ε0
, B̄z = −μ0σ̄ v̄, (12.97)
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where v̄ is the velocity of S̄ relative to S0:

v̄ = v + v0

1 + vv0/c2
, γ̄ = 1√

1 − v̄2/c2
, (12.98)

and

σ̄ = γ̄ σ0. (12.99)

It remains only to express Ē and B̄ (Eq. 12.97), in terms of E and B (Eqs. 12.94
and 12.96). In view of Eqs. 12.90 and 12.99, we have

Ēy =
(

γ̄

γ0

)
σ

ε0
, B̄z = −

(
γ̄

γ0

)
μ0σ v̄. (12.100)

With a little algebra, you can show that

γ̄

γ0
=
√

1 − v2
0/c2

√
1 − v̄2/c2

= 1 + vv0/c2√
1 − v2/c2

= γ
(

1 + vv0

c2

)
, (12.101)

where

γ = 1√
1 − v2/c2

, (12.102)

as always. Thus, writing Ēy in terms of the components of E and B in S,

Ēy = γ
(

1 + vv0

c2

) σ

ε0
= γ

(
Ey − v

c2ε0μ0
Bz

)
,

whereas

B̄z = −γ
(

1 + vv0

c2

)
μ0σ

(
v + v0

1 + vv0/c2

)
= γ (Bz − μ0ε0vEy).
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Or, since μ0ε0 = 1/c2,

Ēy = γ (Ey − vBz),

B̄z = γ
(

Bz − v

c2
Ey

)
.

⎫⎪⎬
⎪⎭ (12.103)

This tells us how Ey and Bz transform—to do Ez and By , we simply align the
same capacitor parallel to the xy plane instead of the xz plane (Fig. 12.39). The
fields in S are then

Ez = σ

ε0
, By = μ0σv0.

(Use the right-hand rule to get the sign of By .) The rest of the argument is
identical—everywhere we had Ey before, read Ez , and everywhere we had Bz ,
read −By :

Ēz = γ (Ez + vBy),

B̄y = γ
(

By + v

c2
Ez

)
.

⎫⎪⎬
⎪⎭ (12.104)

As for the x components, we have already seen (by orienting the capacitor
parallel to the yz plane) that

Ēx = Ex . (12.105)

Since in this case there is no accompanying magnetic field, we cannot deduce the
transformation rule for Bx . But another configuration will do the job: Imagine
a long solenoid aligned parallel to the x axis (Fig. 12.40) and at rest in S. The
magnetic field within the coil is

Bx = μ0nI, (12.106)
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where n is the number of turns per unit length, and I is the current. In system S̄ ,
the length contracts, so n increases:

n̄ = γ n. (12.107)

On the other hand, time dilates: The S clock, which rides along with the solenoid,
runs slow, so the current (charge per unit time) in S̄ is given by

Ī = 1

γ
I. (12.108)

The two factors of γ exactly cancel, and we conclude that

B̄x = Bx .

Like E, the component of B parallel to the motion is unchanged.
Here, then, is the complete set of transformation rules:

Ēx = Ex , Ēy = γ (Ey − vBz), Ēz = γ (Ez + vBy),

B̄x = Bx , B̄y = γ
(

By + v

c2
Ez

)
, B̄z = γ

(
Bz − v

c2
Ey

)
.

(12.109)

Two special cases warrant particular attention:

1. If B = 0 in S, then

B̄ = γ
v

c2
(Ez ŷ − Ey ẑ) = v

c2
(Ēz ŷ − Ēy ẑ),

or, since v = v x̂,

B̄ = − 1

c2
(v × Ē). (12.110)
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2. If E = 0 in S, then

Ē = −γ v(Bz ŷ − By ẑ) = −v(B̄z ŷ − B̄y ẑ),

or

Ē = v × B̄. (12.111)

In other words, if either E or B is zero (at a particular point) in one system, then
in any other system the fields (at that point) are very simply related by Eq. 12.110
or Eq. 12.111.

Example 12.15. Magnetic field of a point charge in uniform motion. Find the
magnetic field of a point charge q moving at constant velocity v.

Solution
In the particle’s rest frame the magnetic field is zero (everywhere), so in a system
moving with velocity −v (in which the particle is moving at velocity +v)24

B = 1

c2
(v × E).

We calculated the electric field in Ex. 12.14. The magnetic field, then, is

B = μ0

4π

qv(1 − v2/c2) sin θ

[1 − (v2/c2) sin2 θ ]3/2

φ̂

R2
, (12.112)

where φ̂ aims counterclockwise as you face the oncoming charge. Incidentally, in
the nonrelativistic limit (v2 � c2), Eq. 12.112 reduces to

B ≈ μ0

4π
q

v × R̂
R2

,

which is exactly what you would get by naïve application of the Biot-Savart law
to a point charge (Eq. 5.43).

Problem 12.42 Why can’t the electric field in Fig. 12.35b have a z component?
After all, the magnetic field does.

Problem 12.43 A parallel-plate capacitor, at rest in S0 and tilted at a 45◦ angle to
the x0 axis, carries charge densities ±σ0 on the two plates (Fig. 12.41). System S is
moving to the right at speed v relative to S0.

24Here v is the particle’s velocity; in Eq. 12.110 it was the velocity of the reference frame.
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(a) Find E0, the field in S0.

(b) Find E, the field in S.

(c) What angle do the plates make with the x axis?

(d) Is the field perpendicular to the plates in S?

Problem 12.44 In system S0, a static uniform line charge λ coincides with the z axis.

(a) Write the electric field E0 in Cartesian coordinates, for the point (x0, y0, z0).

(b) Use Eq. 12.109 to find the electric in S, which moves with speed v in the x
direction with respect to S0. The field is still in terms of (x0, y0, z0); express it
instead in terms of the coordinates (x, y, z) in S. Finally, write E in terms of the
vector S from the present location of the wire and the angle θ between S and x̂.
Does the field point away from the instantaneous location of the wire, like the
field of a uniformly moving point charge?

Problem 12.45

(a) Charge qA is at rest at the origin in system S; charge qB flies by at speed v on a
trajectory parallel to the x axis, but at y = d. What is the electromagnetic force
on qB as it crosses the y axis?

(b) Now study the same problem from system S̄, which moves to the right with
speed v. What is the force on qB when qA passes the ȳ axis? [Do it two ways:
(i) by using your answer to (a) and transforming the force; (ii) by computing
the fields in S̄ and using the Lorentz force law.]

v

v
−q

+q
d

z

x
y

FIGURE 12.42
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Problem 12.46 Two charges, ±q, are on parallel trajectories a distance d apart,
moving with equal speeds v in opposite directions. We’re interested in the force on
+q due to −q at the instant they cross (Fig. 12.42). Fill in the following table, doing
all the consistency checks you can think of as you go along.

System A System B System C
(Fig. 12.42) (+q at rest) (−q at rest)

E at +q due to −q:
B at +q due to −q:
F on +q due to −q:

Problem 12.47

(a) Show that (E · B) is relativistically invariant.

(b) Show that (E2 − c2 B2) is relativistically invariant.

(c) Suppose that in one inertial system B = 0 but E 	= 0 (at some point P). Is it
possible to find another system in which the electric field is zero at P?

Problem 12.48 An electromagnetic plane wave of (angular) frequency ω is traveling
in the x direction through the vacuum. It is polarized in the y direction, and the
amplitude of the electric field is E0.

(a) Write down the electric and magnetic fields, E(x, y, z, t) and B(x, y, z, t). [Be
sure to define any auxiliary quantities you introduce, in terms of ω, E0, and the
constants of nature.]

(b) This same wave is observed from an inertial system S̄ moving in the x direction
with speed v relative to the original system S. Find the electric and magnetic
fields in S̄, and express them in terms of the S̄ coordinates: Ē(x̄, ȳ, z̄, t̄) and
B̄(x̄, ȳ, z̄, t̄). [Again, be sure to define any auxiliary quantities you introduce.]

(c) What is the frequency ω̄ of the wave in S̄? Interpret this result. What is the
wavelength λ̄ of the wave in S̄? From ω̄ and λ̄, determine the speed of the
waves in S̄. Is it what you expected?

(d) What is the ratio of the intensity in S̄ to the intensity in S? As a youth, Ein-
stein wondered what an electromagnetic wave would look like if you could run
along beside it at the speed of light. What can you tell him about the amplitude,
frequency, and intensity of the wave, as v approaches c?

12.3.3 The Field Tensor

As Eq. 12.109 indicates, E and B certainly do not transform like the spatial parts
of the two 4-vectors—in fact, the components of E and B are stirred together
when you go from one inertial system to another. What sort of an object is this,
which has six components and transforms according to Eq. 12.109? Answer: It’s
an antisymmetric, second-rank tensor.

Remember that a 4-vector transforms by the rule

āμ = �μ
ν aν (12.113)
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(summation over ν implied), where � is the Lorentz transformation matrix. If S̄
is moving in the x direction at speed v, � has the form

� =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (12.114)

and �μ
ν is the entry in row μ, column ν. A (second-rank) tensor is an object with

two indices, which transforms with two factors of � (one for each index):

t̄μν = �
μ
λ �ν

σ tλσ . (12.115)

A tensor (in 4 dimensions) has 4 × 4 = 16 components, which we can display in
a 4 × 4 array:

tμν =

⎧⎪⎪⎨
⎪⎪⎩

t00 t01 t02 t03

t10 t11 t12 t13

t20 t21 t22 t23

t30 t31 t32 t33

⎫⎪⎪⎬
⎪⎪⎭

.

However, the 16 elements need not all be different. For instance, a symmetric
tensor has the property

tμν = tνμ (symmetric tensor). (12.116)

In this case there are 10 distinct components; 6 of the 16 are repeats (t01 =
t10, t02 = t20, t03 = t30, t12 = t21, t13 = t31, t23 = t32). Similarly, an
antisymmetric tensor obeys

tμν = −tνμ (antisymmetric tensor). (12.117)

Such an object has just 6 distinct elements—of the original 16, six are repeats
(the same ones as before, only this time with a minus sign) and four are zero
(t00, t11, t22, and t33). Thus, the general antisymmetric tensor has the form

tμν =

⎧⎪⎪⎨
⎪⎪⎩

0 t01 t02 t03

−t01 0 t12 t13

−t02 −t12 0 t23

−t03 −t13 −t23 0

⎫⎪⎪⎬
⎪⎪⎭

.

Let’s see how the transformation rule (Eq. 12.115) works, for the six distinct
components of an antisymmetric tensor. Starting with t̄01, we have

t̄01 = �0
λ�

1
σ tλσ ,

but according to Eq. 12.114, �0
λ = 0 unless λ = 0 or 1, and �1

σ = 0 unless σ = 0
or 1. So there are four terms in the sum:

t̄01 = �0
0�

1
0t00 + �0

0�
1
1t01 + �0

1�
1
0t10 + �0

1�
1
1t11.
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On the other hand, t00 = t11 = 0, while t01 = −t10, so

t̄01 = (�0
0�

1
1 − �0

1�
1
0)t

01 = (γ 2 − (γβ)2)t01 = t01.

I’ll let you work out the others—the complete set of transformation rules is

t̄01 = t01, t̄02 = γ (t02 − βt12), t̄03 = γ (t03 + βt31),

t̄23 = t23, t̄31 = γ (t31 + βt03), t̄12 = γ (t12 − βt02).

}
(12.118)

These are precisely the rules we obtained on physical grounds for the electromag-
netic fields (Eq. 12.109)—in fact, we can construct the field tensor Fμν by direct
comparison:25

F01 ≡ Ex

c
, F02 ≡ Ey

c
, F03 ≡ Ez

c
, F12 ≡ Bz, F31 ≡ By, F23 ≡ Bx .

Written as an array,

Fμν =

⎧⎪⎪⎨
⎪⎪⎩

0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

⎫⎪⎪⎬
⎪⎪⎭

. (12.119)

Thus relativity completes and perfects the job begun by Oersted, combining the
electric and magnetic fields into a single entity, Fμν .

If you followed that argument with exquisite care, you may have noticed that
there was a different way of imbedding E and B in an antisymmetric tensor: In-
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118,
and the second with the second, we could relate the first line of Eq. 12.109 to the
second line of Eq. 12.118, and vice versa. This leads to dual tensor, Gμν :

Gμν =

⎧⎪⎪⎨
⎪⎪⎩

0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

⎫⎪⎪⎬
⎪⎪⎭

. (12.120)

Gμν can be obtained directly from Fμν by the substitution E/c → B, B →
−E/c. Notice that this operation leaves Eq. 12.109 unchanged—that’s why both
tensors generate the correct transformation rules for E and B.

Problem 12.49 Work out the remaining five parts to Eq. 12.118.

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved
by Lorentz transformation (that is: if tμν is symmetric, show that t̄μν is also sym-
metric, and likewise for antisymmetric).

25Some authors prefer the convention F01 ≡ Ex , F12 ≡ cBz , and so on, and some use the opposite
signs. Accordingly, most of the equations from here on will look a little different, depending on the
text.
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Problem 12.51 Recall that a covariant 4-vector is obtained from a contravariant
one by changing the sign of the zeroth component. The same goes for tensors: When
you “lower an index” to make it covariant, you change the sign if that index is zero.
Compute the tensor invariants

Fμν Fμν, GμνGμν, and FμνGμν,

in terms of E and B. Compare Prob. 12.47.

Problem 12.52 A straight wire along the z axis carries a charge density λ traveling
in the +z direction at speed v. Construct the field tensor and the dual tensor at the
point (x , 0, 0).

12.3.4 Electrodynamics in Tensor Notation

Now that we know how to represent the fields in relativistic notation, it is time
to reformulate the laws of electrodynamics (Maxwell’s equations and the Lorentz
force law) in that language. To begin with, we must determine how the sources of
the fields, ρ and J, transform. Imagine a cloud of charge drifting by; we concen-
trate on an infinitesimal volume V , which contains charge Q moving at velocity
u (Fig. 12.43). The charge density is

ρ = Q

V
,

and the current density26 is

J = ρu.

I would like to express these quantities in terms of the proper charge density ρ0,
the density in the rest system of the charge:

ρ0 = Q

V0
,

V

Q

u

FIGURE 12.43

26I’m assuming all the charge in V is of one sign, and it all goes at the same speed. If not, you have to
treat the constituents separately: J = ρ+u+ + ρ−u−. But the argument is the same.
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where V0 is the rest volume of the cloud. Because one dimension (the one along
the direction of motion) is Lorentz-contracted,

V =
√

1 − u2/c2 V0, (12.121)

and hence

ρ = ρ0
1√

1 − u2/c2
, J = ρ0

u√
1 − u2/c2

. (12.122)

Comparing this with Eqs. 12.40 and 12.42, we recognize here the components
of proper velocity, multiplied by the invariant ρ0. Evidently charge density and
current density go together to make a 4-vector:

Jμ = ρ0η
μ, (12.123)

whose components are

Jμ = (cρ, Jx , Jy, Jz). (12.124)

We’ll call it the current density 4-vector.
The continuity equation (Eq. 5.29),

∇ · J = −∂ρ

∂t
,

expressing the local conservation of charge, takes on a nice compact form when
written in terms of Jμ. For

∇ · J = ∂ Jx

∂x
+ ∂ Jy

∂y
+ ∂ Jz

∂z
=

3∑
i=1

∂ J i

∂xi
,

while

∂ρ

∂t
= 1

c

∂ J 0

∂t
= ∂ J 0

∂x0
. (12.125)

Thus, bringing ∂ρ/∂t over to the left side (in the continuity equation), we have:

∂ Jμ

∂xμ
= 0, (12.126)

with summation over μ implied. Incidentally, ∂ Jμ/∂xμ is the four-dimensional
divergence of Jμ, so the continuity equation states that the current density
4-vector is divergenceless.
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As for Maxwell’s equations, they can be written

∂ Fμν

∂xν
= μ0 Jμ,

∂Gμν

∂xν
= 0, (12.127)

with summation over ν implied. Each of these stands for four equations—one for
every value of μ. If μ = 0, the first equation reads

∂ F0ν

∂xν
= ∂ F00

∂x0
+ ∂ F01

∂x1
+ ∂ F02

∂x2
+ ∂ F03

∂x3

= 1

c

(
∂ Ex

∂x
+ ∂ Ey

∂y
+ ∂ Ez

∂z

)
= 1

c
(∇ · E)

= μ0 J 0 = μ0cρ,

or

∇ · E = 1

ε0
ρ.

This, of course, is Gauss’s law. If μ = 1, we have

∂ F1ν

∂xν
= ∂ F10

∂x0
+ ∂ F11

∂x1
+ ∂ F12

∂x2
+ ∂ F13

∂x3

= − 1

c2

∂ Ex

∂t
+ ∂ Bz

∂y
− ∂ By

∂z
=
(

− 1

c2

∂E
∂t

+ ∇ × B
)

x

= μ0 J 1 = μ0 Jx .

Combining this with the corresponding results for μ = 2 and μ = 3 gives

∇ × B = μ0J + μ0ε0
∂E
∂t

,

which is Ampère’s law with Maxwell’s correction.
Meanwhile, the second equation in 12.127, with μ = 0, becomes

∂G0ν

∂xν
= ∂G00

∂x0
+ ∂G01

∂x1
+ ∂G02

∂x2
+ ∂G03

∂x3

= ∂ Bx

∂x
+ ∂ By

∂y
+ ∂ Bz

∂z
= ∇ · B = 0
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(the third of Maxwell’s equations), whereas μ = 1 yields

∂G1ν

∂xν
= ∂G10

∂x0
+ ∂G11

∂x1
+ ∂G12

∂x2
+ ∂G13

∂x3

= −1

c

∂ Bx

∂t
− 1

c

∂ Ez

∂y
+ 1

c

∂ Ey

∂z
= −1

c

(
∂B
∂t

+ ∇ × E
)

x

= 0.

So, combining this with the corresponding results for μ = 2 and μ = 3,

∇ × E = −∂B
∂t

,

which is Faraday’s law. In relativistic notation, then, Maxwell’s four rather cum-
bersome equations reduce to two delightfully simple ones.

In terms of Fμν and the proper velocity ημ, the Minkowski force on a charge
q is given by

K μ = qην Fμν. (12.128)

For if μ = 1, we have

K 1 = qην F1ν = q(−η0 F10 + η1 F11 + η2 F12 + η3 F13)

= q

[
−c√

1 − u2/c2

(−Ex

c

)
+ uy√

1 − u2/c2
(Bz) + uz√

1 − u2/c2
(−By)

]

= q√
1 − u2/c2

[E + (u × B)]x ,

with a similar formula for μ = 2 and μ = 3. Thus,

K = q√
1 − u2/c2

[E + (u × B)], (12.129)

and therefore, referring back to Eq. 12.69,

F = q[E + (u × B)],
which is the Lorentz force law. Equation 12.128, then, represents the Lorentz
force law in relativistic notation. I’ll leave for you the interpretation of the zeroth
component (Prob. 12.55).

Problem 12.53 Obtain the continuity equation (Eq. 12.126) directly from Maxwell’s
equations (Eq. 12.127).

Problem 12.54 Show that the second equation in Eq. 12.127 can be expressed in
terms of the field tensor Fμν as follows:

∂ Fμν

∂xλ
+ ∂ Fνλ

∂xμ
+ ∂ Fλμ

∂xν
= 0. (12.130)
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Problem 12.55 Work out, and interpret physically, the μ = 0 component of the
electromagnetic force law, Eq. 12.128.

12.3.5 Relativistic Potentials

From Chapter 10, we know that the electric and magnetic fields can be expressed
in terms of a scalar potential V and a vector potential A:

E = −∇V − ∂A
∂t

, B = ∇ × A. (12.131)

As you might guess, V and A together constitute a 4-vector:

Aμ = (V/c, Ax , Ay, Az). (12.132)

In terms of this 4-vector potential, the field tensor can be written

Fμν = ∂ Aν

∂xμ

− ∂ Aμ

∂xν

. (12.133)

(Observe that the differentiation is with respect to the covariant vectors xμ and
xν ; remember, that changes the sign of the zeroth component: x0 = −x0. See
Prob. 12.56.)

To check that Eq. 12.133 is equivalent to Eq. 12.131, let’s evaluate a few terms
explicitly. For μ = 0, ν = 1,

F01 = ∂ A1

∂x0
− ∂ A0

∂x1
= − ∂ Ax

∂(ct)
− 1

c

∂V

∂x

= −1

c

(
∂A
∂t

+ ∇V

)
x

= Ex

c
.

That (and its companions with ν = 2 and ν = 3) is the first equation in Eq. 12.131.
For μ = 1, ν = 2, we get

F12 = ∂ A2

∂x1
− ∂ A1

∂x2
= ∂ Ay

∂x
− ∂ Ax

∂y
= (∇ × A)z = Bz,

which (together with the corresponding results for F23 and F31) is the second
equation in Eq. 12.131.

The potential formulation automatically takes care of the homogeneous Max-
well equation (∂Gμν/∂xν = 0). As for the inhomogeneous equation (∂ Fμν/∂xν =
μ0 Jμ), that becomes

∂

∂xμ

(
∂ Aν

∂xν

)
− ∂

∂xν

(
∂ Aμ

∂xν

)
= μ0 Jμ. (12.134)
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This is an intractable equation as it stands. However, you will recall that the poten-
tials are not uniquely determined by the fields—in fact, it’s clear from Eq. 12.133
that you could add to Aμ the gradient of any scalar function λ:

Aμ −→ Aμ′ = Aμ + ∂λ

∂xμ

, (12.135)

without changing Fμν . This is precisely the gauge invariance we noted in
Chapter 10; we can exploit it to simplify Eq. 12.134. In particular, the Lorenz
gauge condition (Eq. 10.12)

∇ · A = − 1

c2

∂V

∂t

becomes, in relativistic notation,

∂ Aμ

∂xμ
= 0. (12.136)

In the Lorenz gauge, therefore, Eq. 12.134 reduces to

�2 Aμ = −μ0 Jμ, (12.137)

where �2 is the d’Alembertian,

�2 ≡ ∂

∂xν

∂

∂xν
= ∇2 − 1

c2

∂2

∂t2
. (12.138)

Equation 12.137 combines our previous results into a single 4-vector equation—it
represents the most elegant formulation of Maxwell’s equations.27

Problem 12.56 You may have noticed that the four-dimensional gradient operator
∂/∂xμ functions like a covariant 4-vector—in fact, it is often written ∂μ, for short.
For instance, the continuity equation, ∂μ J μ = 0, has the form of an invariant product
of two vectors. The corresponding contravariant gradient would be ∂μ ≡ ∂/∂xμ.
Prove that ∂μφ is a (contravariant) 4-vector, if φ is a scalar function, by working out
its transformation law, using the chain rule.

Problem 12.57 Show that the potential representation (Eq. 12.133) automatically
satisfies ∂Gμν/∂xν = 0. [Suggestion: Use Prob. 12.54.]

Problem 12.58 Show that the Liénard-Wiechert potentials (Eqs. 10.46 and 10.47)
can be expressed in relativistic notation as

Aμ = − q

4πε0c

ημ

(ηνrν)
,

where rμ ≡ xμ − wμ(tr ).

27Incidentally, the Coulomb gauge is bad, from the point of view of relativity, because its defining
condition, ∇ · A = 0, is destroyed by Lorentz transformation. To restore this condition, it is necessary
to perform an appropriate gauge transformation every time you go to a new inertial system, in addition
to the Lorentz transformation itself. In this sense, Aμ is not a true 4-vector, in the Coulomb gauge.
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More Problems on Chapter 12

Problem 12.59 Inertial system S̄ moves at constant velocity v = βc(cos φ x̂ +
sin φ ŷ) with respect to S. Their axes are parallel to one another, and their ori-
gins coincide at t = t̄ = 0, as usual. Find the Lorentz transformation matrix �

(Eq. 12.25).
⎡
⎢⎢⎢⎣Answer :

⎛
⎜⎜⎜⎝

γ −γβ cos φ −γβ sin φ 0

−γβ cos φ (γ cos2 φ + sin2 φ) (γ − 1) sin φ cos φ 0

−γβ sin φ (γ − 1) sin φ cos φ (γ sin2 φ + cos2 φ) 0

0 0 0 1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

Problem 12.60 Calculate the threshold (minimum) momentum the pion must have
in order for the process π + p → K + � to occur. The proton p is initially at
rest. Use mπ c2 = 150, mK c2 = 500, m pc2 = 900, m�c2 = 1200 (all in MeV).
[Hint: To formulate the threshold condition, examine the collision in the center-of-
momentum frame (Prob. 12.31). Answer: 1133 MeV/c]

Problem 12.61 A particle of mass m collides elastically with an identical particle
at rest. Classically, the outgoing trajectories always make an angle of 90◦. Calculate
this angle relativistically, in terms of φ, the scattering angle, and v, the speed, in the
center-of-momentum frame. [Answer: tan−1(2c2/v2γ sin φ)]

Problem 12.62 Find x as a function of t for motion starting from rest at the origin
under the influence of a constant Minkowski force in the x direction. Leave your
answer in implicit form (t as a function of x). [Answer: 2K t/mc = z

√
1 + z2 +

ln(z + √
1 + z2), where z ≡ √2K x/mc2]

Problem 12.63 An electric dipole consists of two point charges (±q), each of mass!
m, fixed to the ends of a (massless) rod of length d . (Do not assume d is small.)

(a) Find the net self-force on the dipole when it undergoes hyperbolic motion
(Eq. 12.61) along a line perpendicular to its axis. [Hint: Start by appropriately
modifying Eq. 11.90.]

(b) Notice that this self-force is constant (t drops out), and points in the di-
rection of motion—just right to produce hyperbolic motion. Thus it is pos-
sible for the dipole to undergo self-sustaining accelerated motion with no
external force at all!28 [Where do you suppose the energy comes from?]
Determine the self-sustaining force, F , in terms of m, q , and d. [Answer:
(2mc2/d)

√
(μ0q2/8πmd)2/3 − 1]

Problem 12.64 An ideal magnetic dipole moment m is located at the origin of an
inertial system S̄ that moves with speed v in the x direction with respect to inertial
system S. In S̄ the vector potential is

Ā = μ0

4π

m̄ × ¯̂r
r̄ 2

,

(Eq. 5.85), and the scalar potential V̄ is zero.

28F. H. J. Cornish, Am. J. Phys. 54, 166 (1986).
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(a) Find the scalar potential V in S. [Answer:

1

4πε0

R̂ · (v × m)

c2 R2

(1 − v2/c2)

1 − (v2/c2) sin2 θ)3/2

]

(b) In the nonrelativistic limit, show that the scalar potential in S is that of an ideal
electric dipole of magnitude

p = v × m
c2

,

located at Ō.

m

l l
K

vσ

FIGURE 12.44

Problem 12.65 A stationary magnetic dipole, m = m ẑ, is situated above an infinite!
uniform surface current, K = K x̂ (Fig. 12.44).

(a) Find the torque on the dipole, using Eq. 6.1.

(b) Suppose that the surface current consists of a uniform surface charge σ , mov-
ing at velocity v = v x̂, so that K = σv, and the magnetic dipole consists of a
uniform line charge λ, circulating at speed v (same v) around a square loop of
side l, as shown, so that m = λvl2. Examine the same configuration from the
point of view of system S̄, moving in the x direction at speed v. In S̄, the sur-
face charge is at rest, so it generates no magnetic field. Show that in this frame
the current loop carries an electric dipole moment, and calculate the resulting
torque, using Eq. 4.4.

Problem 12.66 In a certain inertial frame S, the electric field E and the magnetic
field B are neither parallel nor perpendicular, at a particular space-time point. Show
that in a different inertial system S̄, moving relative to S with velocity v given by

v
1 + v2/c2

= E × B
B2 + E2/c2

,

the fields Ē and B̄ are parallel at that point. Is there a frame in which the two are
perpendicular?

Problem 12.67 Two charges ±q approach the origin at constant velocity from
opposite directions along the x axis. They collide and stick together, forming a
neutral particle at rest. Sketch the electric field before and shortly after the collision
(remember that electromagnetic “news” travels at the speed of light). How would
you interpret the field after the collision, physically?29

29See E. M. Purcell, Electricity and Magnetism, 2d ed. (New York: McGraw-Hill, 1985), Sect. 5.7
and Appendix B (in which Purcell obtains the Larmor formula by masterful analysis of a similar
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Problem 12.68 “Derive” the Lorentz force law, as follows: Let charge q be at rest
in S̄, so F̄ = qĒ, and let S̄ move with velocity v = v x̂ with respect to S. Use the
transformation rules (Eqs. 12.67 and 12.109) to rewrite F̄ in terms of F, and Ē in
terms of E and B. From these, deduce the formula for F in terms of E and B.

Problem 12.69 A charge q is released from rest at the origin, in the presence of a
uniform electric field E = E0 ẑ and a uniform magnetic field B = B0 x̂. Determine
the trajectory of the particle by transforming to a system in which E = 0, finding
the path in that system and then transforming back to the original system. Assume
E0 < cB0. Compare your result with Ex. 5.2.

Problem 12.70

(a) Construct a tensor Dμν (analogous to Fμν) out of D and H. Use it to ex-
press Maxwell’s equations inside matter in terms of the free current density J μ

f .
[Answer: D01 ≡ cDx , D12 ≡ Hz , etc.; ∂ Dμν/∂xν = J μ

f .]

(b) Construct the dual tensor Hμν (analogous to Gμν). [Answer: H 01 ≡ Hx , H 12 ≡
−cDz , etc.]

(c) Minkowski proposed the relativistic constitutive relations for linear media:

Dμνην = c2εFμνην and Hμνην = 1

μ
Gμνην,

where ε is the proper30 permittivity, μ is the proper permeability, and ημ is the
4-velocity of the material. Show that Minkowski’s formulas reproduce Eqs. 4.32
and 6.31, when the material is at rest.

(d) Work out the formulas relating D and H to E and B for a medium moving with
(ordinary) velocity u.

Problem 12.71 Use the Larmor formula (Eq. 11.70) and special relativity to derive!
the Liénard formula (Eq. 11.73).

Problem 12.72 The natural relativistic generalization of the Abraham-Lorentz
formula (Eq. 11.80) would seem to be

K μ

rad = μ0q2

6πc

dαμ

dτ
.

This is certainly a 4-vector, and it reduces to the Abraham-Lorentz formula in the
nonrelativistic limit v � c.

(a) Show, nevertheless, that this is not a possible Minkowski force. [Hint: See
Prob. 12.39d.]

geometrical construction), R. Y. Tsien, Am. J. Phys. 40, 46 (1972), and H. C. Ohanian, Am. J. Phys. 48,
170 (1980). The method itself is due to J. J. Thomson, Electricity and Matter (New Haven, CT: Yale
University Press,1904), p. 55.
30As always, “proper” means “in the rest frame of the material.”
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(b) Find a correction term that, when added to the right side, removes the objection
you raised in (a), without affecting the 4-vector character of the formula or its
nonrelativistic limit.31

Problem 12.73 Generalize the laws of relativistic electrodynamics (Eqs. 12.127 and
12.128) to include magnetic charge. [Refer to Sect. 7.3.4.]

31For interesting commentary on the relativistic radiation reaction, see F. Rohrlich, Am. J. Phys. 65,
1051 (1997).
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