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Problem 1
a) Eliminate the trigonometric terms (using an idenitity you have to be familiar with by

now) to obtain a relation between x and t.

x2 − (ct)2 = c4/α2 (1.1)

b)

Your sketch should look like this, a hyperbolic trajectory. The two asymptotes are x = ct
and x = −ct.

c) The set of spacetime points from where no signal can ever reach the particle is the
region x < ct. We can understand this visually.

The red curve indicates the trajectory of the particle.
The purple region indicates the region I described earlier from where no signal can ever
reach the particle. The green region is the past light cone of the particle i.e the set of all
spacetime points which could have transmitted a signal in the past that the particle is

receiving now.

Notice how the green region does not overlap with the purple at all, even on moving the
point around on the red curve. In the limiting case where t → ∞, the green and purple region
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share a boundary, but still no overlap. This shows that no point in the purple region could
possibly transmit a signal to our particle because the signal would necessarily be spacelike
i.e travel with a speed greater than c.

You can have a look yourself at https://www.desmos.com/calculator/ntpi8eb5ko.

d) The particle moves a small distance dx in a small time dt. The small change in proper
time as seen by the particle, would be the time elapsed in a frame where it does not move
in between the two measurements (Recall the derivation of proper time).
Let this change in proper time be denoted by ds. The position four vector that describes
the change in spacetime coordinates mentioned above is (cdt, dx) in the original frame and
(cds, 0) in the frame where proper time is observed. Equate the norms of these two four
vectors because the norm of a four vector is a Lorentz invariant.

(cds)2 = (cdt)2 − (dx)2 (1.2)

Find dx and dt from the equations given in the question.

dx = csinh(
ατ

c
)dτ (1.3)

dt = cosh(
ατ

c
)dτ (1.4)

Plug this back into (1.2) and you get:

(ds)2 = (dτ)2 (1.5)

Square root and integrate, and you have s = τ i.e the proper time you defined initially,
is equal to τ .

e) We already have what we need in (1.3) and (1.4). Divide to obtain:

u(τ) = ctanh(
ατ

c
) (1.6)

This is indeed consistent with special relativity. The speed of the particle tends to, but
never crosses c (Graph is labelled in units of c).
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f) I’m going to let you do some work on this one. Use u(τ), t(τ) and the chain rule to
arrive at a(τ), the acceleration of the particle in the S frame. You should get:

a(τ) = αsech3(
ατ

c
) (1.7)

As expected, acceleration observed in the S frame tends to 0 as the trajectory progresses.
For if it did not, the particle would have finite non zero acceleration even at t → ∞, and

this would allow it to attain the speed of light, which as we know, is not allowed.

g) the MCRF is a frame that moves with the same velocity as that of the particle
itself, which is why the frame is ”momentarily co-moving” with the particle at that instant.
We can use our trusty Lorentz transformations to calculate a small change in time dt′ when
the particle undergoes a small shift in spacetime in frame S given by (cdt, dx).

dt′ = γ(dt− u

c2
dx) (1.8)

We can find γ(τ) because we know u(τ).

γ(τ) = cosh(
ατ

c
) (1.9)

Plug γ(τ), dt(τ) (from 1.4), u(τ), dx(τ) (from 1.3) in (1.8):

dt′ = cosh(
ατ

c
)
[
cosh(

ατ

c
)− tanh(

ατ

c
)sinh(

ατ

c
)
]
dτ (1.9)

Simplify and you land at what you want.

dt′ = dτ (1.10)
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h) Going by the hint given to us, find u′ and u′ + du′.

u′ = γ [(γu)− β(γc)] (1.11)

= γ2 [u− βc)] (1.12)

= 0 (1.13)

This makes perfect sense. Why?
The definition of the MCRF was that it’s a frame where the particle is momentarily at rest,
so it’s velocity u′ at that instant must be 0. If you’re confused about (1.11), it’s just Lorentz
transforming four-velocity between frames. You should know what the components of four-
velocity are. The LHS of (1.11) has just u′ and not γu′ is because the spatial component of
four-velocity in MCRF is equal to its three velocity in the MCRF because dt′ = dτ (Recall
how four-velocity was derived), thus making the four-velocity in the MCRF = (c,u⃗).
Moving on, let’s find u′ + du′ at time τ + dτ .

u′ + du′ = γ [(γ(u+ du))− β(γc)] (1.14)

du′ = γ(γdu) (1.15)

I skipped one step in the above equation, but I’m going to let you figure it out, shouldn’t
be too hard. The terms on the RHS are functions of τ so substitute everything. You should
be able to do this on your own so I’m choosing to be lazy again and skip those steps.

du′ = αdτ (1.16)

And job done.

a′ = α (1.17)
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Problem 2
Before we get started, let’s simplify the information already provided to us. Let k(z− ct)

be some variable θ, and with some basic trig knowledge, we can write the following.

E⃗(x, y, z, t) = E0(cosθx̂− sinθŷ) (2.1)

B⃗(x, y, z, t) =
E0

c
(sinθx̂+ cosθŷ) (2.2)

Some nice things we can already observe is that E⃗(x, y, z, t) and B⃗(x, y, z, t) are perpen-
dicular, as expected for a light beam. We can also observe the polarization of the beam i.e
the direction of the electric field.

a) Before we apply our Lorentz transformations, we are faced with one small hurdle. The
frame S ′ is moving with a relative velocity (with respect to S in the z direction. We know
the transformation equations for one that is along the x direction. So let’s solve this issue.

- Fast, efficient and handwavy method:

z

x

y

−x

z

y

The first figure shows our usual coordinate setup. The second figure shows the same, but
rotated so that the new Z axis matches with the old X axis. This helps us because now it

is the same physical situation under which we derived the electromagnetic Lorentz
transforms in class. All you have to do is replace the vectors the way you see them in the

rotated graph.

Replace x in the old equations with z

Replace y in the old equations with y

Replace z in the old equations with −x

I hope you understand why this makes sense. The second figure is identical to the first one,
but we just rename the axes for our convenience, to fit it into equations we already know.

So, our new Lorentz transforms become the following:

E ′
x = γ(Ex − vzBy)

E ′
y = γ(Ey + vzBx)

E ′
z = Ez
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B′
x = γ(Bx +

vz
c2
Ey)

B′
y = γ(By −

vz
c2
Ex)

B′
z = Bz

The long and rigorous method of arriving at the same transforms would be to write how
the electromagnetic field tensor transforms when there is a Lorentz boost along Z direction.
A big fat equation that would take too much time during an exam. You can try it out
though, you get the same result.
Use the transforms, and you should land up with:

E⃗ ′(x, y, z, t) = E0γ(1− β)(cosθx̂− sinθŷ) (2.3)

B⃗′(x, y, z, t) =
E0γ(1− β)

c
(sinθx̂+ cosθŷ) (2.4)

b) The polarization of the wave in S ′ is the same as that in S, as we can see from (2.3)
but what could be an intuitive explanation for this? To be honest, I’m not very sure myself.
I don’t want to give a wrong answer so I’ll let it be for now. If I find out later, I’ll add it in.

c) This is just long and boring calculation. I will let you do it yourself. You should end
up with:

U = ϵ0E
2
0 (2.5)

U ′ =
1− β

1 + β
ϵ0E

2
0 (2.6)

P⃗ =
ϵ0E

2
0

c
k̂ (2.7)

P⃗ ′ =
1− β

1 + β

ϵ0E
2
0

c
k̂ (2.8)

d) Check if the above formulae satisfy Lorentz transformations for a four vector of the

form (U,P⃗ c). Keep in mind that the Lorentz boost is one along Z.

cP ′
z = γ(cPz − βU) (2.9)

cP ′
z = γ(ϵ0E

2
0 − βϵ0E

2
0) (2.10)

cP ′
z = γ(1− β)ϵ0E

2
0 (2.11)

P ′
z =

√
1− β

1 + β

ϵ0E
2
0

c
(2.12)
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Similarly, Lorentz transforming between U and U’ gives us:

U ′ =

√
1− β

1 + β
ϵ0E

2
0 (2.13)

Yes. We do not get the same results as (2.6) and (2.8). Unfortunately, even after a lot
of trying I have not figured out why :(

If you catch the mistake, please let me know. Apologies for not being able to provide a
complete solution booklet. I’ve still uploaded this because the rest of the questions which I
think I have done correctly might be of use to you.
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Problem 3
a) The first question that comes to mind is, how do you maximise the energy of the

electron? This question can be answered with more ease in the center of momentum frame
of the system of the proton and the neutrino. In this frame, the neutron initially has
some velocity and it then splits into the mentioned products. Now, to maximise the KE
of the electron, what do we do? Ensure that the proton and neutrino are both at rest in
this frame. This is done so that none of the initial energy goes into energy of the proton
and neutrino, and the electron takes it all. Conserving four momentum between the initial
neutron and the final electron and system of proton+neutrino, we can write:

pn = pe + ps (3.1)

pn − pe = ps (3.2)

(pn − pe)(pn − pe) = ps.ps (3.3)

−m2
n −m2

e + 2mnEe = −E2
s + p2s (3.4)

I have put c = 1 in all the above calculations. It’s a thing that is done during many of
these sums to simplify the calculations, and all the data is provided in units of c, so don’t
worry about that. The LHS of (3.4) came from the fact that the norm of a momentum four
vector of a body with mass m is −m2. The value of pn.pe is easy to calculate because the
neutron is at rest (the calculation is done in ground frame, not COM frame). The RHS is
the usual stuff, with the system of the proton and neutrino considered as one.

Now, we apply the crucial step. The RHS of (3.4) is a Lorentz invariant in any given
situation, and in our situation we have made ps be equal to 0 in the COM frame to achieve
maximum KE for the electron, therefore −E2

s + p2s in the ground frame must be equal to
−E2

s in the COM frame. The second term vanishes because of what I just said. The first
term is the square of energy of the system in this frame, and what is that? It is simply the
squared sum of the masses of the two particles, because they do not have any other energy
due to them being at rest. Not only that, the neutrino is a massless particle, which makes
things even simpler. Therefore:

−m2
n −m2

e + 2mnEe = −m2
p (3.5)

Simplify.

Ee =
m2

n +m2
e −m2

p

2mn

(3.6)

b) In the ground frame,

En = Ee + Ep + Eν (3.7)

pe = pp + pν (3.8)

You have two equations, and two unknowns. You know En, Ee and consequently pe.
Your unknowns are Ep and Eν . You write pp in terms of Ep, and then use one equation to
eliminate it from other, and obtain the value of Eν . Simple but annoying calculation. Have
fun doing it.
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