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A1. Consider the operator,

∂µ ≡


∂

∂(ct)

− ∂
∂x

− ∂
∂y

− ∂
∂z


Now implementing Lorentz boost along x−axis we can have transformation between new (primed) and old
(unprimed) coordinates of space-time position 4-vector as,

ct′

x′

y′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 (1)

or conversely, 
ct
x
y
z

 =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1



ct′

x′

y′

z′

 (2)

So in the prime coordinate, we will have

∂

∂(ct′)
=
∂(ct)

∂(ct′)

∂

∂(ct)
+

∂x

∂(ct′)

∂

∂x
+

∂y

∂(ct′)

∂

∂y
+

∂z

∂(ct′)

∂

∂z

= γ
∂

∂(ct)
− γβ

(
− ∂

∂x

)
(3)

Similarly we get,

− ∂
∂x′ = −γβ ∂

∂(ct) + γ
(
− ∂
∂x

)
∂
∂y′ = ∂

∂y ,
∂
∂z′ = ∂

∂z

Combining all we can get, 
∂

∂(ct′)

− ∂
∂x′

− ∂
∂y′

− ∂
∂z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




∂
∂(ct)

− ∂
∂x

− ∂
∂y

− ∂
∂z

 (4)

From transformation relation 4, we can conclude that this operator ∂µ transforms like a contravariant
4-vector under Lorentz boost along x−direction.
(Marks distribution : Writing down transformation matrix between usual position vector will award 1
point, subsequent calculations carry 6 marks.)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A2. Considering an infinitesimal Lorentz boost along x−direction by a parameter ηx � 1, we can write
the transformation matrix as,

Λx(ηx) =


coshηx −sinhηx 0 0
−sinhηx coshηx 0 0

0 0 1 0
0 0 0 1

 ηx�1−→


1 −ηx 0 0
−ηx 1 0 0

0 0 1 0
0 0 0 1

 (5)

Similarly for infinitesimal Lorentz boost along y−axis by parameter ηy � 1, we get

Λy(ηy) ≈


1 0 −ηy 0
0 1 0 0
−ηy 0 1 0

0 0 0 1

 (6)
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Now

O1 ≡ Λy(ηy)Λx(ηx) =


1 −ηx −ηy 0
−ηx 1 0 0
−ηy ηyηx 1 0

0 0 0 1

 (7)

and

O2 ≡ Λx(ηx)Λy(ηy) =


1 −ηx −ηy 0
−ηx 1 ηyηx 0
−ηy 0 1 0

0 0 0 1

 (8)

So

O1 −O2 =


0 0 0 0
0 0 −ηxηy 0
0 ηxηy 1 0
0 0 0 0

 =


1 0 0 0
0 1 −ηxηy 0
0 ηxηy 1 0
0 0 0 1

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ≡ R2(−ηxηy)− I4×4 (9)

where R2(−ηxηy) corresponds to 2-dimensional infinitesimal spatial rotation with θ = −ηxηy in x− y plane
along z−axis and I4×4 identity matrix in 4-dimensions. Usual spatial rotation matrix can be written as,

R2(θ) =


1 0 0 0
0 cosθ sinθ 0

0− sinθ cosθ 0
0 0 0 1

 θ→0−→


1 0 0 0
0 1 θ 0
0 −θ 1 0
0 0 0 1

 (10)

(Marks distribution : Identifying O1, O2 correctly → 2 + 2, prove the relation in the hint → 3, Interpreting
correctly → 3.)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A3− a. Energy of the described particle will follow the relation E2 = p2c2 +m2c4 or E = +
√
p2c2 +m2c4

which will correspond to the "one-sided" hyperbola in E − pc plane (only allowed energy of physical
particle according to relativity should be taken positive). Intersection point on E−axis will be mc2 here.

A3− b. Here for two mentioned particles we have

E2
1 = p21c

2 +m2c4

E2
2 = p22c

2 +m2c4

Also, according to the problem we have E = E1 +E2, p = p1 + p2, p
′ = p1 − p2 (last one we have introduced

for convenience also taken c = 1 here). So now (again retaining c),

E = E1 + E2 =
√
p21c

2 +m2c4 +
√
p22c

2 +m2c4

=

√(
p+ p′

2

)2

c2 +m2c4 +

√(
p− p′

2

)2

c2 +m2c4

> 2

[[(
p+ p′

2

)2

c2 +m2c4

][(
p− p′

2

)2

c2 +m2c4

]]1/4
=
[
(p2 − p′2)2c4 + 16m4c8 + 8m2c6(p2 + p′2)

]1/4 (11)
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Here p′ →∞ or −∞, the expression is unconstrained and equality implies p′ = 0. So now after expanding
the expression,

E > [(p4 + 16m4c4 + 8m2p2c2)c4 + p′2(p′2 − 2p2c2 + 8m2c6)]1/4

> [(p4 + 16m4c4 + 8m)] (inequality saturated for p′ = 0)

= [(p2 + 4m2c2)2c4]1/4

or, E2 > (p2c2 + 4m2c4) (12)

All points on the boundary have the value M = 2m with intersection point on 2mc2.

A3− c. pµpµ = E2 − p2c2 ≡M2c4 > 4m2c4 where M is the invariant mass with M > 2m.
A3− d. In the frame S, (p1 + p2)

2 = E2 − p2c2. We can always find a frame with p′ = 0 (where p′ is the

transformed 4-vector of p under Lorentz transformation). As we know that,
(
E
−→p

)
is transforming as

4-vector under Lorentz transformation, so(
E′
−→p ′c

)
=
(

coshη −sinhη
−sinhη coshη

)(
E
−→p c

)
In the frame where −→p ′ = 0, we get −sinhηE + pccoshη = 0 or tanhη = pc

E . To find the minimum value of
(p1 + p2)

2, for every (p1 + p2) we have to go to the frame where −→p ′ = −→p1 ′ +−→p2 ′ = 0. Also (p1 + p2)
2 would

be invariant in this special frame. So we get,

M2c4 = pµpµ ≡ (p1 + p2)
2 = E′2 = (E′1 + E′2)

2 = (
√−→p1 ′2c2 +m2c4 +

√−→p2 ′2c2 +m2c4)2

Now in this frame |−→p1 ′| = |−→p2 ′|, so M2c4 > 4m2c4. The minimum value for pµpµ is 4m2c4 i.e., M > 2m. In
the original frame S, we have

pνp
µ = E2 −−→p 2c2 > 4m2c4 ⇒ E2 > −→p 2c2 + 4m2c4.

(Marks distribution : according to the marks distribution in the problem.)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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A4. In a high energy collision we have the 2-body decay process, π0 → γγ. In the rest frame S, two
photons should travel back to back.

Also we have pµπ = pµ1 + pµ2 while in 4-vector notation we have,
mπc

2

0
0
0

 =


E1

p1ccosθ
p1csinθ

0

+


E2

−p2ccosθ
−p2csinθ

0



Here as p1 = p2, E1 = E2 = mπc2

2 and for final state photon p1 = E1
c = mπc

2 . So pµ1 =


mπc2

2
mπc
2 cosθ
mπc
2 sinθ

0

 and

pµ2 =


mπc2

2
−mπc

2 cosθ
−mπc

2 sinθ
0

. Now in the lab frame S′ moving w.r.t. relative velocity v in the negative x−direction

(i.e. β = v
c ), we have the transformed angle in this frame θ′ represented as,

tanθ′ =
sinθ

√
1− β2

cosθ − β
(13)

Also, γ = E
mπc2

. Now we can have,

1− β2 = 1
γ2

= m2
πc

4

E2 ⇒ β = −
[
E2−m2

πc
4

E2

]1/2
As we have considered β negative in this case. For such high-energy process, E � mπc

2 i.e., β ≈ 1. For the
first photon we have tanθ′1 = 1

γ
sinθ

cosθ+1 ≈
1
γ tan

θ
2 = mπ

E tan θ2 . For the second photon, θ′2 = γ − θ i.e., the angle
making w.r.t. positive x−direction. So tanθ′2 = mπ

E tan
[
π
2 −

θ
2

]
= mπ

E cot θ2 . The angle between two emitting
photons ∆φ = θ′1 + θ′2 = mπ

E

[
tan θ2 + cot θ2

]
. With these information,

tan∆φ =
tanθ′1 + tanθ′2
1− tanθ′1tanθ′2

≈ mπ

E

1 + tan2 θ2
tan θ2

(E � mπc
2)

≈ 2mπ

E

1

sinθ
(14)

For such high energy process, we have a large boost so ∆φ is small, so ∆φ ≈ 2mπ
E

1
sinθ .

(Marks distribution : Identifying all the components of momentum 4-vector neatly in rest frame → 2+2,
transformed angle in unprimed frame → 1, clearly stating θ′1, θ′2 and their difference → 2+2+2.)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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A5. In frame S, we have fully antisymmetric 4 dimensional Levi-Civita tensor as

εµνρσ = +1 (if µ = 0, ν = 1, ρ = 2, σ = 3)

= +1 (for even number of indices exchange)
= −1 (for odd number of indices exchange)
= 0 (if any two indices are equal) (15)

In the transformed frame S′, we have ε′µνρσ = ΛµαΛνβΛργΛσδ ε
αβγδ. For boost along x−direction, we have

transformation matrix, Λµα =


coshη −sinhη 0 0
−sinhη coshη 0 0

0 0 1 0
0 0 0 1

. Now we have,

ε′0123 = Λ0
αΛ1

βΛ2
γΛ3

δε
αβγδ (16)

From this definition in Eq.16, we have non-zero value iff α = 0 or 1, β = 0 or 1, γ = 2, δ = 3. Due to
antisymmetric nature of ε, we have to have α, β = 0, 1 or β, α = 1, 0.

ε′0123 = Λ0
0Λ

1
1Λ

2
2Λ

3
3ε

0123 + Λ0
1Λ

1
0Λ

2
2Λ

3
3ε

1023 = cosh2η + sinh2η × (−1) = 1

where negative sign corresponds to the antisymmteric nature of ε. Now

ε′νµρσ = ΛναΛµβΛργΛσδ ε
αβγδ

= −ΛµβΛναΛργΛσδ ε
βαγδ (antisymmetricity of ε)

= −ΛµαΛνβΛργΛσδ ε
αβγδ (changing dummy indices α→ β, β → α)

= −ε′µνρσ (17)

So ε′ satisfies same fully antisymmetric properties. Now if two indices are same, then say, ε′0012 = −ε′0012
(using the antisymmetric property of ε by exchanging two zeroes), we have ε′0012 = 0. So ε′ in S′ has
exactly same component values in S′.
(Marks distribution : Clearly stating properties of ε in S frame → 2, to prove them (antisymmetricity,
same component, even-odd permutation) in S′ frame → 2+2+2.)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A6− a. In the spacetime diagram, let’s consider the worldline for the moving observer as ct = x
β with

β = 3/5 according to the problem. Any light source can be designated as an event in spacetime point
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(ctL, xL). Light emitted from the source will travel in different direction i.e., in forward or backward
direction. Let’s consider, ctseen = xseen/β where the observer observes the light signal at (ctseen, xseen). Now
we can face two situations like,
(i) if ctL < xL

β then the observer will see the backward emitted light from any source, so we can consider
the slope of the line joining (ctseen, xseen) and (ctL, xL) should be -1. Then we have

ctseen − ctL
xseen − xL

= −1⇒ ctseen =
ctL + xL

1 + β
(18)

(ii) Now if ctL > xL
β , the observer will see the forward moving light from the source, so the line should have

slope +1.
ctseen =

ctL − xL
1− β

(19)

Now we have to check which condition is suitable for the light sources A, B, C, D. We can easily find out
that the condition 1 has been satisfied by lamps C, D whereas A, B will satisfy the condition 2.
We can also calculate corresponding ctseen for each lamps to find out the sequence of receiving light. So
now,

ctseen(A) = 2−1
1−3/5 = 2.5, ctseen(B) = 4−2

1−3/5 = 5,
ctseen(C) = 2+3

1+3/5 = 3.125, ctseen(D) = 3+4
1+3/5 = 4.375.

So the detection order corresponds to A→ C → D → B.
A6− b. Now the turning on time of the lamps in observer’s frame will be,

ct′L = γ(ctL − βxL) = 1√
1−(3/5)2

(ctL − 3
5xL)

Putting values xL(A) = 1, xL(B) = 2, xL(C) = 3, xL(D) = 4 and
ctL(A) = 2, ctL(B) = 4, ctL(C) = 2, ctL(D) = 3, we have
ct′L(A) = 1.75, ct′L(B) = 3.5, ct′L(C) = 0.25, ct′L(D) = 0.75. So the sequence of light signals turning on will
be C → D → A→ B.
(Marks distribution : For part a) clearly stating the conditions and find the sequence → 2+2, for part b)
according to the problem.)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A7− a. To get the equation for the trajectory for the observer :

x2 − c2t2 =

(
c2

α

)2 [
cosh2

ατ

c
− sinh2

ατ

c

]
=

(
c2

α

)2

(20)

A7− b. See Fig.1.

Figure 1: Solution of 7(b)

A7− c. The proper time for the observer,
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c2dτ ′2 = c2dt2 − dx2 =
(
α
c
c2

α cosh
(
ατ
c

)
dτ
)2
−
(
α
c
c2

α sinh
(
ατ
c

)
dτ
)2

= c2dt2

We can have then dτ ′ = dτ ⇒ τ ′ = τ + c where c corresponds to the integration constant, can be
considered as the offset. So τ is just the proper time for the observer.
A7− d. v = dx

dt = dx/dτ
dt/dτ = ctanh

(
ατ
c

)
. So the functional dependence of v w.r.t. τ can be shown in figure

with the asymptotic values, v(τ → ±∞)→ ±c.

A7− e See Fig.2. No signal from the shaded region will reach the observer.

Figure 2: Solution of 7(e,f)

A7− f See Fig.2. The time t0 will be x0
c .

A7− g. For the observer sitting on the star at horizon crossing, we have x0 = ct0. Proper distance
between (ct0, x0) and (ct, x) at any instant will be,

−σ2 =

[
ct0 −

c2

α
sinh

(ατ
c

)]2
−
[
x0 −

c2

α
cosh

(ατ
c

)]2
=

(
c2

α

)2 [
sinh2

ατ

c
− cosh2

ατ

c

]
− x0

2c2

α

[
sinh

ατ

c
− cosh

ατ

c

]
= −

(
c2

α

)2

+
2c2

α
x0e
−ατ

c

or, σ =

√(
c2

α

)2

− 2c2

α
x0e
−ατ

c . (21)

A7− h. Now as τ →∞, we will get σ → c2

α which is independent of x0.
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A7− i. Consider, the frequency detected in the comoving reference frame as ν ′ whereas the emitted light
has initial frequency ν. Now using Doppler relation from the departing source we can get,

ν ′ = ν

√
1− v/c
1 + v/c

= ν

√
1− tanhατc
1 + tanhατc

= ν

√
e−ατ/c

eατ/c
= νe−ατ/c (22)

So we can clearly see here ν ′ exponentially decreases as τ increases. Light from the star will be more and
more red-shifted till it becomes undetectable at the point of horizon crossing.
(Marks distribution : according to the marks distribution stated in the problem.)

—Solution ends—
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