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”Relativity is simple, that does not make it easy.”
I made that quote up.

Anyway, I hope this solution booklet helps you. If there is anything that you feel has been
solved wrongly, please let me know.
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Problem 1
a) If a particle maintained constant acceleration in the S frame, then it would eventually

gain the speed of light, and cross it. We know that this is not possible because c is the
limiting speed of all matter.

b) What you know here is that there are two frames: S, the original frame and S’, the
MCRF at that instant of time. The particle has a velocity v at this instant, so to be at rest
in a certain frame, that frame (the MCRF) must be moving with the same velocity v with
respect to S. Check using the velocity addition rule that this is indeed true.
Now, in frame S’ you wait at a particular x’, you stand there and watch your watch tick off
a small time dτ , what is the time elapsed between these two events (x’,τ) and (x’,τ + dτ)
measured in the S frame?

Using the Lorentz transforms, we obtain:

dt/γ = dτ (1.1)

c) The particle’s velocity in S’ increases by an amount du = adτ . To find the corre-
sponding increase dv in the S frame, apply the velocity addition formula, transforming the
changed velocity in S’ which is 0 + du to the changed velocity v + dv in S’

v + dv =
du+ v

1 + vdu/c2
(1.2)

Simplifying...

v + dv =
adτ + v

1 + vadτ
c2

(1.3)

Using the fact that vadτ ≪ c2, we can make use of binomial approximation.

v + dv = (adτ + v)(1− vadτ

c2
) (1.4)

= adτ(1− v2

c2
) + v − v

(adτ)2

c2
(1.5)

Neglecting the second order differential terms and cancelling v on both sides, we obtain:

dv = a(1− v2

c2
)dτ (1.6)

Yay!

d) Integration time.

dv

1− v2

c2

= adτ (1.7)

Let v/c = tanh(α). This gives:

dv = csech2(α)dα (1.8)

and therefore our original equation simplifies to:

csech2(α)dα

1− tanh2(α)
= adτ (1.9)
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One small remark: I recommend that you brush up your hyperbolic trigonometry. It is
quite handy throughout this course. Using one such hyperbolic trigonometric identity, the
numerator and denominator of the LHS of Equation (1.9) cancel, and we are left with a
simple integral.

dα =
adτ

c
(1.10)

Integrating and setting the constant of integration to zero because v = 0 (which implies
α = 0) at τ = 0:

α =
aτ

c
(1.11)

Taking tanh on both sides:

tanh(α) = tanh(
aτ

c
) (1.12)

Replace α and you have v(τ)!

v = ctanh(
aτ

c
) (1.13)

e) We have v(τ), and we know that it is equal to dx/dt at t=τ . To find x(τ) and t(τ),
we are going to use the chain rule, and the fact that we already know t(τ). (Think why?)

v(τ) =
dx/dτ

dt/dτ
(1.14)

From equation (1.1):

dt

dτ
= γ (1.15)

Plug in γ(τ) using Equation (1.13) to obtain the following:

dt = cosh(aτ/c)dτ (1.16)

Integrate and you have t(τ)!

t(τ) =
c

a
sinh(aτ/c) (1.17)

Now, I’m going to skip a few steps so that you do some hard work. I’ll give you hints
though. Use Equation (1.13) and (1.14) and arrive at:

x(τ) =
c2

a
cosh(aτ/c) (1.18)

f) Eliminate the trigonometric terms to obtain a relation between x and t.

x2 − (ct)2 = c4/a2 (1.19)
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Your sketch should look like this. The two asymptotes are x = ct and x = −ct

g) This question might scare you. It definitely did scare me when I first read it, but let’s
take it step by step. Notice that the question says A and B have a common MCRF. This
implies that v(τ) must be the same function for both.(Why?)

The information provided to us is that, at the same time in the common MCRF, B is
ahead of A by ξ, so let’s turn that into math:

t′B = t′A (1.20)

x′
B = x′

A + ξ (1.21)

Transforming x′
B back to the S frame:

xB = γ(x′
B + vt′B) (1.22)

The ’+’ sign in between is because S is moving a relative velocity -v with respect to S’.
Substitute x′

B and t′B using (1.20) and (1.21).

xB = γ(x′
A + ξ + vt′A) (1.23)

xB = γ(x′
A + vt′A) + γξ (1.24)

xB = xA + γξ (1.23)

xB =
c2

a
cosh(aτ/c) + ξcosh(aτ/c) (1.24)

Therefore,

xB(τ) = (
c2

a
+ ξ)cosh(aτ/c) (1.25)

You know vB(τ) so use that and (1.25) to obtain tB(τ). You get:
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ctB(τ) = (
c2

a
+ ξ)sinh(aτ/c) (1.26)

h) Notice that xA = c2

a
cosh(aτ/c) where a is the acceleration of A in the MCRF. Similarly

we can write xB = c2

a′
cosh(aτ/c) where a’ would be the acceleration of B in the MCRF. The

good thing is that we have already achieved this form of xB(τ) in (1.25). Use this to find a’.

c2

a′
=

c2

a
+ ξ (1.27)

Simplify and you have your answer.

a′ =
a

1 + aξ
c2

(1.28)

And this is what your sketch should look like.

i) If the expression c2

a
+ ξ were negative, it would imply that a’ is negative. (Why?) This

would mean B is moving on the left branch on the hyperbola while A is moving on the right
branch. The distance between them is clearly increasing in the S frame, and is definitely not
a constant in the MCRF as we would have wanted. Therefore, c2

a
+ ξ must be positive so

that B maintains a constant separation from A in their common MCRF. And tada!

ξ > −c2

a
(1.29)
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Problem 2

Conserve energy and momentum. Keep in mind that:

∆E = mc2 −m′c2 (2.1)

and the internal energy of atom decreases (the question has a typo). How else would the
photon have gained energy? It is because the atom lost some mass, and that mass provided
the energy for the photon and atom’s KE. So, we have using conservation of energy:

mc2 = hν + E ′ (2.2)

E’ is the total energy of the resultant atom, not just the rest mass energy or the ki-
netic energy. This is important, otherwise you might get confused later on. Now, conserve
momentum.

0 =
h

λ
+ p′ (2.3)

λ is the wavelength of the emitted photon and p’ is the momentum of the resultant atom.
Now we have to do some grindwork, unfortunately. Start with (2.2).

mc2 − hν = E ′ (2.4)

Square both sides.

m2c4 + (hν)2 − 2mhνc2 = p′2c2 +m′2c4 (2.5)

We know (hν)2 = p′2c2 from (2.3).

m2c4 − 2mhνc2 = m′2c4 (2.6)

Keep this aside for now. Rewrite (2.1) as:

∆E −mc2 = m′c2 (2.7)

Square both sides. Replace the RHS with the LHS of (2.6)

∆E2 +m2c4 + 2m∆Ec2 = m2c4 − 2mhνc2 (2.8)

Bring hν to one side and you have what you want!

hν = ∆E(1−∆E/2mc2) (2.9)

Not so hard, but definitely some tricky simplifications that you had to do here.
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Problem 3

Hope your brain cells haven’t turned to mush by now, but just one more question and we’re
done. So, buckle up.

a) Start by writing a familiar equation.

dp⃗

dt
= qE⃗0 (3.1)

This also implies that,

d|p⃗|
dt

= q|E⃗0| (3.2)

Substitute |p⃗| as γmu and apply the product rule of differentiation.

mγ
du

dt
+mu

dγ

dt
= qE0 (3.3)

This should leave you with:

ma

(1− u2/c2)1/2
+

mau2

c2(1− u2/c2)3/2
= qE0 (3.4)

Simplify and you will get:

ma

(1− u2/c2)3/2
= qE0 (3.5)

And we’re done!

a =
qE0

m
(1− u2

c2
)3/2 (3.6)

b) Integrate (3.1) and set the constant of integration to 0 because p = 0 at t = 0.

γmu = qE0t (3.7)

Rewriting...

u√
1− u2

c2

=
qE0t

m
(3.8)

Now all you have to do is find u. You’ll end up with:

u(t) =
qE0t/m√

1 + (qE0t/mc)2
(3.9)
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c)

Notice how u asymptotes to a value as t → ∞.

That value can be obtained from (3.9) to be c.

d) This is a scenario you have definitely come across during JEE. A body with some
constant mass experiences a constant force to due to magnetic field (which is always perpen-
dicular to its velocity). What motion does it undergo? Uniform circular motion. The force
due to magnetic field provides the centripetal acceleration for this motion. Note that in this
reference frame, the particle is at rest and it’s mass m′ = γm.

F =
m′u2

R
(3.10)

quB0 =
m′u2

R
(3.11)

And we have,

R =
m′u

qB0

(3.12)

ω = u/R (3.13)

=
qB0

m′ (3.14)

=
qB0

m

√
1− u2

c2
(3.15)

And we’re done. Thank you for reading all the way till here. Any feedback is always
welcome.

8


