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Chapter 12

Electrodynamics and Relativity

Problem 12.1
Let u be the velocity of a particle in S, ū its velocity in S̄, and v the velocity of S̄ with respect to S.

Galileo’s velocity addition rule says that u = ū + v. For a free particle, u is constant (that’s Newton’s first
law in S.

(a) If v is constant, then ū = u�v is also constant, so Newton’s first law holds in S̄, and hence S̄ is inertial.
(b) If S̄ is inertial, then ū is also constant, so v = u� ū is constant.
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(ū
D

+ v),
m

A

ū
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But the middle terms are equal by conservation of momentum, and the last terms are equal by conservation
of mass, so 1
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Problem 12.3
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In mi/h, c = (186, 000 mi/s)⇥ (3600 sec/hr) = 6.7⇥ 108 mi/hr.
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Problem 12.4

(a) Velocity of bullet relative to ground is 1
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Problem 12.5

(a) Light from 90th clock took 90⇥10
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= 300 sec = 5 min to reach me, so the time I see on the clock is
11:55 am .

(b) I observe 12 noon .
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As v ! c, u!1 , because the denominator ! 0 — even though v < c.

Problem 12.7
The student has not taken into account time dilation of the muon’s “internal clock”. In the laboratory, the
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Problem 12.8
(a) Rocket clock runs slow; so earth clock reads �t = 1p

1�v

2
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· 1 hr. Here � = 1p
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) According to earth clocks signal was sent 1 hr, 15 min after take-o↵.

(b) By earth observer, rocket is now a distance
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Light signal will therefore take 3

4

hr to return to earth. Since it left 1 hr and 15 min after departure, light
signal reaches earth 2 hrs after takeo↵

(c) Earth clocks run slow: t
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Problem 12.10
Say length of mast (at rest) is l̄. To an observer on the boat, height of mast is l̄ sin ✓̄, horizontal projection

is l̄ cos ✓̄. To observer on dock, the former is una↵ected, but the latter is Lorentz contracted to 1

�

l̄ cos ✓̄.
Therefore:

tan ✓ =
l̄ sin ✓̄

1

�

l̄ cos ✓̄
= � tan ✓̄, or tan ✓ =

tan ✓̄p
1� v2/c2

Problem 12.11
Naively, circumference/diameter = 1

�

(2⇡R)/(2R) = ⇡/� = ⇡
p

1� (!R/c)2 — but this is nonsense. Point
is: an accelerating object cannot remain rigid, in relativity. To decide what actually happens here, you need a
specific model for the internal forces holding the disc together.
Problem 12.12
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Problem 12.13
Let brother’s accident occur at origin, time zero, in both frames. In system S (Sophie’s), the coordinates

of Sophie’s cry are x = 5 ⇥ 105 m, t = 0. In system S̄ (scientist’s), t̄ = �(t � v
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this is negative, Sophie’s cry occurred before the accident, in S̄. � = 1p
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Problem 12.14
(a) In S it moves a distance dy in time dt. In S̄, meanwhile, it moves a distance dȳ = dy in time dt̄ =
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dt̄
=

dy

�(dt� v

c

2

dx)
=

(dy/dt)
�
�
1� v

c

2

dx

dt

� ; or ū
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(b) S = dock frame; S 0 = boat frame; we need reverse transformations (v ! �v):

tan ✓ = �u
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◆
[Contrast tan ✓ = � sin

¯

✓

cos

¯

✓

in Prob. 12.10. The point is that velocities are sensitive not only to the transfor-
mation of distances, but also of times. That’s why there is no universal rule for translating angles — you have
to know whether it’s an angle made by a velocity vector or a position vector.]

That’s how the velocity vector of an individual photon transforms. But the beam as a whole is a snapshot
of many di↵erent photons at one instant of time, and it transforms the same way the mast does.
Problem 12.15

Bullet relative to ground:
5
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c. Outlaws relative to police:
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c . [Velocity of A relative to B is minus the velocity of

B relative to A, so all entries below the diagonal are trivial. Note that in every case v
bullet

< v
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, so no
matter how you look at it, the bad guys get away.]
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relative to #

Ground Police Outlaws Bullet Do they escape?

Ground 0 1

2

c

3

4

c

5

7

c Yes
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Problem 12.16

(a) Moving clock runs slow, by a factor � = 1p
1�(4/5)

2

= 5

3

. Since 18 years elapsed on the moving clock,
5

3

⇥ 18 = 30 years elapsed on the stationary clock. 51 years old

(b) By earth clock, it took 15 years to get there, at 4

5

c, so d = 4

5

c⇥ 15 years = 12c years (12 light years)

(c) t = 15 yrs, x = 12c yrs

(d) t̄ = 9 yrs, x̄ = 0. [She got on at the origin in S̄, and rode along on S̄, so she’s still at the origin. If you
doubt these values, use the Lorentz Transformations, with x and t in (c).]

(e) Lorentz Transformations:
⇢

x̃ = �(x + vt)
t̃ = �(t + v

c

2

x)

�
[note that v is negative, since S̃ us going to the left ]

) x̃ = 5

3

(12c yrs + 4

5

c · 15 yrs) = 5

3

· 24c yrs = 40c years.

t̃ = 5

3

(15 yrs + 4

5

c

c

2

· 12c yrs) = 5

3

�
15 + 48

5

�
yrs = (25 + 16)yrs = 41 years.

(f) Set her clock ahead 32 years, from 9 to 41 (t̄! t̃). Return trip takes 9 years (moving time), so her clock

will now read 50 years at her arrival. Note that this is 5

3

· 30 years—precisely what she would calculate if the
stay-at-home had been the traveler, for 30 years of his own time.
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(g) (i) t̄ = 9 yrs, x = 0. What is t? t = v

c

2

x + ¯

t

�

= 3

5

· 9 yrs = 27

5

= 5.4 years, and he started at age 21, so he’s

26.4 years old (Younger than traveler (!) because to the traveller it’s the stay-at-home who’s moving.)

(ii) t̃ = 41 yrs, x = 0. What is t? t = ˜

t

�

= 3

5

· 41 yrs, or 123

5

yrs, or 24.6 yrs, and he started at 21, so he’s

45.6 years old.

(h) It will take another 5.4 years of earth time for the return, so when she gets back, she will say her twin’s
age is 45.6 + 5.4 = 51 years—which is what we found in (a). But note that to make it work from traveler’s
point of view you must take into account the jump in perceived age of the stay-at-home when she changes
coordinates from S̄ to S̃.)
Problem 12.17

�ā0b̄0 + ā1b̄1 + ā2b̄2 + ā3b̄3 = ��2(a0 � �a1)(b0 � �b1) + �2(a1 � �a0)(b1 � �a0) + a2b2 + a3b3

= ��2(a0b0 � �a0b1� � �a1b0� + �2a1b1 � a1b1 + �a1b0� + �a0b1� � �2a0b0) + a2b2 + a3b3

= ��2a0b0(1� �2) + �2a1b1(1� �2) + a2b2 + a3b3

= �a0b0 + a1b1 + a2b2 + a3b3. qed [Note: �2(1� �2) = 1.]

Problem 12.18

(a)

0BB@
ct̄
x̄
ȳ
z̄

1CCA =

0BB@
1 0 0 0
�� 1 0 0
0 0 1 0
0 0 0 1

1CCA
0BB@

ct
x
y
z

1CCA (using the notation of Eq. 12.24, for best comparison)

(b) ⇤ =

0BB@
� 0 ��� 0
0 1 0 0
��� 0 � 0

0 0 0 1

1CCA

(c) Multiply the matrices: ⇤ =

0BB@
�̄ 0 ��̄�̄ 0
0 1 0 0
��̄�̄ 0 �̄ 0

0 0 0 1

1CCA
0BB@

� ��� 0 0
��� � 0 0

0 0 1 0
0 0 0 1

1CCA =

0BB@
��̄ ���̄� ��̄�̄ 0
��� � 0 0
��̄��̄ ��̄��̄ �̄ 0

0 0 0 1

1CCA
Yes, the order does matter. In the other order “bars” and “no-bars” would be switched, and this would yield

a di↵erent matrix.
Problem 12.19
(a) Since tanh ✓ = sinh ✓

cosh ✓

, and cosh2 ✓ � sinh2 ✓ = 1, we have:

� =
1p

1� v2/c2

=
1p

1� tanh2 ✓
=

cosh ✓p
cosh2 ✓ � sinh2 ✓

= cosh ✓ ; �� = cosh ✓ tanh ✓ = sinh ✓.

) ⇤ =

0BB@
cosh ✓ � sinh ✓ 0 0
� sinh ✓ cosh ✓ 0 0

0 0 1 0
0 0 0 1

1CCA Compare: R =

0@ cos� sin� 0
� sin� cos� 0

0 0 1

1A
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(b) ū =
u� v

1� uv

c

2

) ū

c
=

�
u

c

�
�
�

v

c

�
1�

�
u

c

� �
v

c

� ) tanh �̄ =
tanh�� tanh ✓

1� tanh� tanh ✓
, where tanh� = u/c, tanh ✓ = v/c;

tanh �̄ = ū/c. But a “trig” formula for hyperbolic functions (CRC Handbook, 18th Ed., p. 204) says:

tanh�� tanh ✓
1� tanh� tanh ✓

= tanh(�� ✓). ) tanh �̄ = tanh(�� ✓), or: �̄ = �� ✓

Problem 12.20
(a) (i) I = �c2�t2 +�x2 +�y2 +�z2 = �(5� 15)2 +(10� 5)2 +(8� 3)2 +(0� 0)2 = �100+25+25 = �50

(ii) No. (In such a system �t̄ = 0, so I would have to be positive, which it isn’t.)

(iii) Yes.

1

✲ x

✻
y

2 4 6 8 10

2

4

6

8

A

B

❂
︸ ︷︷ ︸

5

︸
︷
︷

︸

5

✻
ct

✲ x

#
world line
of player 1

✮
world line of
player 2

✲✛
10 ft

✠

world line of
the ball

✒

■

✒

■

✒

✲ x

✻
ct

A

B✶
✐
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S̄ travels in the direction from B toward A,
making the trip in time 10/c.

) v =
�5x̂� 5ŷ

10/c
= � c

2
x̂� c

2
ŷ

Note that v

2

c

2

= 1

4

+ 1

4

= 1

2

, so v = 1p
2

c, safely
less than c.

(b) (i) I = �(3� 1)2 + (5� 2)2 + 0 + 0 = �4 + 9 = 5

(ii) Yes. By Lorentz Transformation: �(ct̄) = �
�
�(ct)� �(�x)

�
. We want �t̄ = 0, so �(ct) = �(�x); or

v

c
=

�(ct)
(�x)

=
(3� 1)
(5� 2)

=
2
3
. So v =

2
3
c in the +x direction.

(iii) No. (In such a system �x = �y = �z = 0 so I would be negative, which it isn’t.)

Problem 12.21
Using Eq. 12.18 (iv): �t̄ = �(�t� v

c

2

�x) = 0) �t = v

c

2

�x, or v = �t

�x

c2 =
t
B

� t
A

x
B

� x
A

c2
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Problem 12.22
(a)

1

✲ x

✻
y

2 4 6 8 10

2

4

6

8

A

B

❂
︸ ︷︷ ︸

5

︸
︷
︷

︸

5

✻
ct

✲ x

#
world line
of player 1

✮
world line of
player 2

✲✛
10 ft

✠

world line of
the ball

✒

■

✒

■

✒

✲ x

✻
ct

A

B✶
✐
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Truth is, you never do communicate with
the other person right now—you communicate
with the person he/she will be when the mes-
sage gets there; and the response comes back
to an older and wiser you.

(b) No way It is true that a moving observer
might say she arrived at B before she left A,
but for the round trip everyone must agree
that she arrives back after she set out.

Problem 12.24

(a)
�
1� u

2

c

2

�
⌘2 = u2; u2

�
1 + ⌘

2

c

2

�
= ⌘2; u =

1p
1 + ⌘2/c2

⌘.
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(b) 1p
1�u

2

/c

2

= 1p
1�tanh

2

✓

= cosh ✓p
cosh

2

✓�sinh

2

✓

= cosh ✓ ) ⌘ = 1p
1�u

2

/c

2

u = cosh ✓ c tanh ✓ = c sinh ✓.

Problem 12.25

(a) u
x

= u
y

= u cos 45� = 1p
2

2p
5

c =
r

2
5

c.

(b) 1p
1�u

2

/c

2

= 1p
1�4/5

=
p

5p
5�4

=
p

5. ) ⌘ = up
1�u

2

/c

2

) ⌘
x

= ⌘
y

=
p

2

(c) ⌘
0

= �c =
p

5 c.

(d) Eq. 12.45)

8>><>>:
ū

x

= u

x

�v

1�u

x

v

c

2

=
p

2

5

c�
p

2

5

c

1� 2

5

= 0.

ū
y

= 1

�

⇣
u

y

1�u

x

v

c

2

⌘
=
q

1� 2

5

p
2

5

c

1� 2

5

=
p

2/5p
3/5

c =
r

2
3

c.

(e) ⌘̄
x

= �(⌘
x

� �⌘0) =
q

1� 2

5

(
p

2 c�
q

2

5

p
5 c) = 0. ⌘̄

y

= ⌘
y

=
p

2 c.

(f) 1p
1�ū

2

/c

2

= 1p
1�2/3

=
p

3; ) ⌘̄ =
p

3 ū)
⇢
⌘̄

x

=
p

3 ū
x

= 0 X
⌘̄

y

=
p

3 ū
y

=
p

2 c X

�
Problem 12.26

⌘µ⌘
µ

= �(⌘0)2 + ⌘2 = 1

(1�u

2

/c

2

)

(�c2 + u2) = �c2

(1�u

2

/c

2

)

(1�u

2

/c

2

)

= �c2. Timelike.

Problem 12.27
Use the result of Problem 12.24(a): u =

1p
1 + ⌘2/c2

⌘. Here
⌘

c
=

4
3
, so

1p
1 + 16/9

=
3
5
, and hence

u =
3
5
(4⇥ 108) = 2.4⇥ 108 m/s. Innocent.

Problem 12.28
(a) From Prob. 11.34 we have � = 1

b

p
b2 + c2t2. ) ⌧ =

R
1

�

dt = b
R

dtp
b

2

+c

2

t

2

= b

c

ln(ct +
p

b2 + c2t2) + k; at

t = 0 we want ⌧ = 0: 0 = b

c

ln b + k, so k = � b

c

ln b; ⌧ =
b

c
ln

1
b
(ct +

p
b2 + c2t2)

�
(b)
p

x2 � b2 + x = bec⌧/b;
p

x2 � b2 = bec⌧/b� x; x2� b2 = b2e2c⌧/b� 2xbec⌧/b + x2; 2xbec⌧/b = b2(1 + e2c⌧/b);
x = b

�
e

c⌧/b

+e

�c⌧/b

2

�
= b cosh(c⌧/b) . Also from Prob. 11.34: v = c2t/

p
b2 + c2t2.

v = c

x

p
x2 � b2 = c

b cosh(c⌧/b)

q
b2 cosh2(c⌧/b)� b2 = c

p
cosh

2

(c⌧/b)�1

cosh(c⌧/b)

= c sinh(c⌧/b)

cosh(c⌧/b)

= c tanh
⇣c⌧

b

⌘
.

(c) ⌘µ = �(c, v, 0, 0). � = x

b

= cosh c⌧

b

, so ⌘µ = cosh c⌧

b

�
c, c tanh c⌧

b

, 0, 0
�

= c
⇣
cosh

c⌧

b
, sinh

c⌧

b
, 0, 0

⌘
.

Problem 12.29
(a) m

A

u
A

+ m
B

u
B

= m
C

u
C

+ m
D

u
D

; u
i

=
ū

i

+ v

1 + (ū
i

v/c2)
.

m
A

ū
A

+ v

1 + (ū
A

v/c2)
+ m

B

ū
B

+ v

1 + (ū
B

v/c2)
= m

C

ū
C

+ v

1 + (ū
C

v/c2)
+ m

D

ū
D

+ v

1 + (ū
D

v/c2)
.

This time, because the denominators are all di↵erent, we cannot conclude that
m

A

ū
A

+ m
B

ū
B

= m
C

ū
C

+ m
D

ū
D

.
As an explicit counterexample, suppose all the masses are equal, and u

A

= �u
B

= v, u
C

= u
D

= 0. This is
a symmetric “completely inelastic” collision in S, and momentum is clearly conserved (0=0). But the Einstein
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velocity addition rule gives ū
A

= 0, ū
B

= �2v/(1 + v2/c2), ū
C

= ū
D

= �v, so in S̄ the (incorrectly defined)
momentum is not conserved:

m

✓
�2v

1 + v2/c2

◆
6= �2mv.

(b) m
A

⌘
A

+ m
B

⌘
B

= m
C

⌘
C

+ m
D

⌘
D

; ⌘
i

= �(⌘̄
i

+ �⌘̄0

i

). (The inverse Lorentz transformation.)
m

A

�(⌘̄
A

+ �⌘̄0

A

) + m
B

�(⌘̄
B

+ �⌘̄0

B

) = m
C

�(⌘̄
C

+ �⌘̄0

C

) + m
D

�(⌘̄
D

+ �⌘̄0

D

). The gamma’s cancel:
m

A

⌘̄
A

+ m
B

⌘̄
B

+ �(m
A

⌘̄0

A

+ m
B

⌘̄0

B

) = m
C

⌘̄
C

+ m
D

⌘̄
D

+ �(m
C

⌘̄0

C

+ m
D

⌘̄0

D

).
But m

i

⌘0

i

= p0

i

= E
i

/c, so if energy is conserved in S̄ (Ē
A

+ Ē
B

= Ē
C

+ Ē
D

), then so too is the momentum
(correctly defined):

m
A

⌘̄
A

+ m
B

⌘̄
B

= m
C

⌘̄
C

+ m
D

⌘̄
D

. qed
Problem 12.30

�mc2 �mc2 = nmc2 ) � = n + 1 = 1

1�
p

u

2

/c

2

) 1� u

2

c

2

= 1

(n+1)

2

) u

2

c

2

= 1� 1

(n+1)

2

= n

2

+2n+1�1

(n+1)

2

= n(n+2)

(n+1)

2

; u =
p

n(n + 2)
n + 1

c

Problem 12.31
E

T

= E
1

+ E
2

+ · · · ; p
T

= p
1

+ p
2

+ · · · ; p̄
T

= �(p
T

� �E
T

/c) = 0) � = v/c = p
T

c/E
T

v = c2p
T

/E
T

= c2(p
1

+ p
2

+ · · · )/(E
1

+ E
2

+ · · · )

Problem 12.32

E
µ

=
(m2

⇡

+ m2

µ

)
2m

⇡

c2 = �m
µ

c2 ) � =
(m2

⇡

+ m2

µ

)
2m

⇡

m
µ

=
1p

1� v2/c2

; 1� v2

c2

=
1
�2

;

v2

c2

= 1� 1
�2

= 1�
4m2

⇡

m2

µ

(m2

⇡

+ m2

µ

)2
=

m4

⇡

+ 2m2

⇡

m2

µ

+ m4

µ

� 4m2

⇡

m2

µ

(m2

⇡

+ m2

µ

)2
=

(m2

⇡

�m2

µ

)2

(m2

⇡

+ m2

µ

)2
; v =

 
(m2

⇡

�m2

µ

)
(m2

⇡

+ m2

µ

)

!
c.

Problem 12.33
Initial momentum: E2 � p2c2 = m2c4 ) p2c2 = (2mc2)2 �m2c4 = 3m2c4 ) p =

p
3 mc.

Initial energy: 2mc2 + mc2 = 3mc2.
Each is conserved, so final energy is 3mc2, final momentum is

p
3 mc.

E2 � p2c2 = (3mc2)2 � (
p

3 mc)2c2 = 6m2c4 = M2c4. ) M =
p

6 m ⇡ 2.5m

(In this process some kinetic energy was converted into rest energy, so M > 2m.)

v =
pc2

E
=
p

3 mc c2

3mc2

=
cp
3

= v.

Problem 12.34
First calculate pion’s energy: E2 = p2c2 + m2c4 = 9

16

m2c4 + m2c4 = 25

16

m2c4 ) E = 5

4

mc2.
Conservation of energy: 5

4

mc2 = E
A

+ E
B

Conservation of momentum: 3

4

mc = p
A

+ p
B

= E

A

c

� E

B

c

) 3

4

mc2 = E
A

� E
B

�
2E

A

= 2mc2

) E
A

= mc2; E
B

=
1
4
mc2.
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Problem 12.35
Classically, E = 1

2

mv2. In a colliding beam experiment, the relative velocity (classically) is twice the
velocity of either one, so the relative energy is 4E.

2

✲ x

✻ct

x̄
=
−

3
x̄

=
−

2
x̄

=
−

1
x̄

=
0

x̄
=

1
x̄

=
2

x̄
=

3

c̄t = −3c̄t = −2c̄t = −1c̄t = 0c̄t = 1c̄t = 2c̄t = 3

✒

✛ ✲8.7

✻

❄

9.2

✲ S

✻

1⃝✲ 2⃝✛E E

✲ S̄

✻

1⃝ 2⃝✛Ē
=⇒v

✲
m m

(before)

✒EA

⑦EB

60◦

θ

(after)
✲ ct

✻x

A
✒

B

✒
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Let S̄ be the system in which 1� is at rest. Its
speed v, relative to S, is just the speed of 1�
in S.

p̄0 = �(p0 � �p1)) ¯

E

c

= �
�

E

c

� �p
�
, where p is the momentum of 2� in S.

E = �Mc2, so � = E

Mc

2

; p = ��MV = ��M�c. ) Ē = �
�

E

c

+ ��M�c
�
c = �(E + �Mc2�2)

�2 = 1

1��

2

) 1� �2 = 1

�

2

) �2 = 1� 1

�

2

= �

2�1

�

2

. ) Ē = E

Mc

2

E +
h�

E

Mc

2

�
2 � 1

i
Mc2

Ē = E

2

Mc

2

+ E

2

Mc

2

�Mc2; Ē =
2E2

Mc2

�Mc2.

For E = 30 GeV and Mc2 = 1 GeV, we have Ē = (2)(900)

1

� 1 = 1800� 1 = 1799 GeV = 60E.

Problem 12.36

2

✲ x

✻ct

x̄
=
−

3
x̄

=
−

2
x̄

=
−

1
x̄

=
0

x̄
=

1
x̄

=
2

x̄
=

3

c̄t = −3c̄t = −2c̄t = −1c̄t = 0c̄t = 1c̄t = 2c̄t = 3

✒

✛ ✲8.7

✻

❄

9.2

✲ S

✻

1⃝✲ 2⃝✛E E

✲ S̄

✻

1⃝ 2⃝✛Ē
=⇒v

✲
m m

(before)

✒EA

⑦EB

60◦

θ

(after)
✲ ct

✻x

A
✒

B

✒
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One photon is impossible, because in the “center of mo-
mentum” frame (Prob. 12.31) we’d be left with a photon
at rest, whereas photons have to travel at speed c.

8<:
Cons. of energy:

p
p
0

c2 + m2c4 + mc2 = E
A

+ E
B

Cons. of mom.:
⇢

horizontal: p
0

= E

A

c

cos 60� + E

B

c

cos ✓ ) E
B

cos ✓ = p
0

c� 1

2

E
A

vertical: 0 = E

A

c

sin 60� � E

B

c

sin ✓ ) E
B

sin ✓ =
p

3

2

E
A

�
square and add:

E2

B

(cos2 ✓ + sin2 ✓) = p
0

c2 � p
0

cE
A

+
1
4
E2

A

+
3
4
E2

A

) E2

B

= p
0

c2 � p
0

cE
A

+ E2

A

=
q

p2

0

c2 + m2c4 + mc2 � E
A

�
2

= p
0

c2 + m2c4 + 2
q

p2

0

c2 + m2c4(mc2 � E
A

) + m2c4 � 2E
A

mc2 + E2

A

. Or:

�p
0

cE
A

= 2m2c4 + 2mc2

q
p2

0

c2 + m2c4 � 2E
A

q
p2

0

c2 + m2c4 � 2E
A

mc2;

) E
A

(mc2 +
q

p2

0

c2 + m2c4 � p
0

c/2) = m2c4 + mc2

p
p
0

c2 + m2c4;

E
A

= mc2

(mc2 +
p

p2

0

c2 + m2c4)
(mc2 +

p
p2

0

c2 + m2c4 � p
0

c/2)
· (mc2 �

p
p2

0

c2 + m2c4 � p
0

c/2)
(mc2 �

p
p2

0

c2 + m2c4 � p
0

c/2)

= mc2

(m2c4� � p2

0

c2 �m2c4� � 1

2

p
0

mc3 � p

0

c

2

p
p2

0

c2 + m2c4)

(m2c4� � p
0

mc3 + p

0

c

2

4

� p
0

c2 �m2c4� )
=

mc2

2
(mc + 2p

0

+
p

p2

0

+ m2c2)
(mc + 3

4

p
0

)
.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is

protected under all copyright laws as they currently exist. No portion of this material may be

reproduced, in any form or by any means, without permission in writing from the publisher.



272 CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY

Problem 12.37

F =
dp
dt

=
d

dt

mup
1� u2/c2

= m

(
du

dtp
1� u2/c2

+ u
✓
�1

2

◆ � 1

c

2

2u·du

dt

(1� u2/c2)3/2

)

=
mp

1� u2/c2

⇢
a +

u(u·a)
(c2 � u2)

�
. qed

Problem 12.38
At constant force you go in “hyperbolic” mo-
tion. Photon A, which left the origin at t < 0,
catches up with you, but photon B, which
passes the origin at t > 0, never does.

2

✲ x

✻ct

x̄
=
−

3
x̄

=
−

2
x̄

=
−

1
x̄

=
0

x̄
=

1
x̄

=
2

x̄
=

3

c̄t = −3c̄t = −2c̄t = −1c̄t = 0c̄t = 1c̄t = 2c̄t = 3

✒

✛ ✲8.7

✻

❄

9.2

✲ S

✻

1⃝✲ 2⃝✛E E

✲ S̄

✻

1⃝ 2⃝✛Ē
=⇒v

✲
m m

(before)

✒EA

⑦EB

60◦

θ

(after)
✲ ct

✻x

A
✒

B

✒

c⃝2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

Problem 12.39

(a) ↵0 =
d⌘

0

d⌧
=

d⌘
0

dt

dt

d⌧
=

"
d

dt

 
cp

1� u2/c2

!#
1p

1� u2/c2

=
cp

1� u2/c2

✓
�1

2

◆ �
� 1

c

2

�
2u·a

(1� u2/c2)3/2

=
1
c

u·a
(1� u2/c2)2

.

↵↵↵ =
d⌘

d⌧
=

dt

d⌧

d⌘

dt
=

1p
1� u2/c2

d

dt

 
up

1� u2/c2

!
=

1p
1� u2/c2

(
ap

1� u2/c2

+ u(�t)
� 1

c

2

2u·a
(1� u2/c2)3/2

)

=
1

(1� u2/c2)


a +

u(u·a)
(c2 � u2)

�
.

(b) ↵
µ

↵µ = �(↵0)2 + ↵↵↵·↵↵↵ = � 1
c2

(u·a)2

(1� u2/c2)4
+

1
(1� u2/c2)4


a(1� u2

c2

) +
1
c2

u(u·a)
�
2

=
1

(1� u2/c2)4

(
� 1

c2

(u·a)2 + a2

✓
1� u2

c2

◆
2

+
2
c2

✓
1� u2

c2

◆
(u·a)2 +

1
c4

u2(u·a)2
)

=
1

(1� u2/c2)4

⇢
a2

✓
1� u2

c2

◆
2

+
(u·a)2

c2

�
�1 + 2� 2

u2

c2

+
u2

c2| {z }
(1� u

2

c

2

)

��

=
1

(1� u2/c2)2


a2 +

(u·a)2

(c2 � u2)

�
.

(c) ⌘µ⌘
µ

= �c2, so d

d⌧

(⌘µ⌘
µ

) = ↵µ⌘
µ

+ ⌘µ↵
µ

= 2↵µ⌘
µ

= 0, so ↵µ⌘
µ

= 0.

(d) Kµ = d⇢

µ

d⌧

= d

d⌧

(m⌘µ) = m↵µ. Kµ⌘
µ

= m↵µ⌘
µ

= 0.
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Problem 12.40

K
µ

Kµ = �(K0)2 + K·K. From Eq. 12.69, K·K = F

2

(1�u

2

/c

2

)

. From Eq. 12.70:

K0 =
1
c

dE

d⌧
=

1
c
p

1� u2/c2

d

dt

 
mc2p

1� u2/c2

!
=

mcp
1� u2/c2


�1

2
(�1/c2)

(1� u2/c2)3/2

2u·a
�

=
m

c

(u·a)
(1� u2/c2)2

But Eq. 12.74: u·F = uF cos ✓ =
mp

1� u2/c2


(u·a) +

u2(u·a)
c2(1� u2/c2)

�
=

m(u·a)
(1� u2/c2)3/2

, so:

K0 =
uF cos ✓

c
p

1� u2/c2

. ) K
µ

Kµ =
F 2

(1� u2/c2)
� u2F 2 cos2 ✓

c2(1� u2/c2)
=

1� (u2/c2) cos2 ✓

(1� u2/c2)

�
F 2. qed

Problem 12.41

F =
mp

1� u2/c2


a +

u(u·a)
c2 � u2

�
= q(E + u⇥B)) a +

u(u·a)
(c2 � u2)

=
q

m

p
1� u2/c2(E + u⇥B).

Dot in u: (u·a) +
u2(u·a)

c2(1� u2/c2)
=

u·a
(1� u2/c2)

=
q

m

p
1� u2/c2

⇥
u·E + u·(u⇥B)| {z }

= 0

⇤
;

) u(u·a)
(c2 � u2)

=
q

m

r
1� u2

c2

u(u·E)
c2

. So a =
q

m

r
1� u2

c2

�
E + u⇥B� 1

c2

u(u·E)
�
. qed

Problem 12.42
One way to see it is to look back at the general formula for E (Eq. 10.36). For a uniform infinite plane of

charge, moving at constant velocity in the plane, J̇ = 0 and ⇢̇ = 0, while ⇢ (or rather, �) is independent of t
(so retardation does nothing). Therefore the field is exactly the same as it would be for a plane at rest (except
that � itself is altered by Lorentz contraction).

A more elegant argument exploits the fact that E is a vector (whereas B is a pseudovector). This means that
any given component changes sign if the configuration is reflected in a plane perpendicular to that direction.
But in Fig. 12.35(b), if we reflect in the x y plane the configuration is unaltered, so the z component of E would
have to stay the same. Therefore it must in fact be zero. (By contrast, if you reflect in a plane perpendicular
to the y direction the charges trade places, so it is perfectly appropriate that the y component of E should
reverse its sign.)
Problem 12.43

(a) Field is �
0

/✏
0

, and it points perpendicular to the positive plate, so:

E
0

=
�

0

✏
0

(cos 45�x̂ + sin 45�ŷ) =
�

0p
2 ✏

0

(�x̂ + ŷ).

(b) From Eq. 12.109, E
x

= E
x

0

= � �

0p
2 ✏

0

; E
y

= �E
y

0

= � �

0p
2 E

0

. So E =
�

0p
2 ✏

0

(�x̂ + �ŷ).

(c) From Prob. 12.10: tan ✓ = �, so ✓ = tan�1 �.

(d) Let n̂ be a unit vector perpendicular to the plates in S — evidently
n̂ = � sin ✓ x̂ + cos ✓ ŷ; |E| = �

0p
2 ✏

0

p
1 + �2.
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3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X

✯X̄

❑Ȳ

❄φ ✲ x̄

✻ȳ
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So the angle � between n̂ and E is:

E·n̂
|E| = cos� =

1p
1 + �2

(sin ✓ + � cos ✓) =
cos ✓p
1 + �2

(tan ✓ + �) =
2�p

1 + �2

cos ✓

But � = tan ✓ = sin ✓

cos ✓

=
p

1�cos

2

✓

cos ✓

=
q

1

cos

2

✓

� 1) 1

cos

2

✓ = �2 + 1) cos ✓ = 1p
1+�

2

. So cos� =
✓

2�
1 + �2

◆
.

Evidently the field is not perpendicular to the plates in S.

Problem 12.44

(a) E =
�

2⇡✏
0

ŝ
s

=
�

2⇡✏
0

x
0

x̂ + y
0

ŷ
(x2

0

+ y2

0

)
.

(b) Ē
x

= E
x

=
�

2⇡✏
0

x
0

(x2

0

+ y2

0

)
, Ē

y

= �E
y

= �
�

2⇡✏
0

y
0

(x2

0

+ y2

0

)
, Ē

z

= �E
z

= 0, Ē =
�

2⇡✏
0

(x
0

x̂ + �y
0

ŷ
(x2

0

+ y2

0

)
.

Using the inverse Lorentz transformations (Eq. 12.19), x
0

= �(x + vt), y
0

= y,

Ē =
�

2⇡✏
0

�(x + vt) x̂ + �y ŷ
[�2(x + vt)2 + y2]

=
�

2⇡✏
0

1
�

(x + vt) x̂ + y ŷ
[(x + vt)2 + y2/�2]

.

Now S = (x+vt) x̂+y ŷ, and y = S sin ✓, so [(x+vt)2+y2/�2] = [(x+vt)2+y2(1�v2/c2] = S2�(v/c)2S2 sin2 ✓ =
S2[1� (v/c)2 sin2 ✓], so

Ē =
�

2⇡✏
0

p
1� (v/c)2�

1� v2 sin2 ✓/c2

� Ŝ
S

.

This is reminiscent of Eq. 10.75. Yes, the field does point away from the present location of the wire.

Problem 12.45

(a) Fields of A at B: E = 1

4⇡✏

0

q

A

d

2

ŷ; B = 0. So force on q
B

is F =
1

4⇡✏
0

q
A

q
B

d2

ŷ.

3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X

✯X̄

❑Ȳ

❄φ ✲ x̄

✻ȳ
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✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y
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❑Ȳ

❄φ ✲ x̄

✻ȳ
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(b) (i) From Eq. 12.67: F̄ =
�

4⇡✏
0

q
A

q
B

d2

ŷ. (Note: here the particle is at rest in S̄.)

(ii) From Eq. 12.93, with ✓ = 90�: Ē =
1

4⇡✏
0

q
A

(1� v2/c2)
(1� v2/c2)3/2

1
d2

ŷ =
�

4⇡✏
0

q
A

d2

ŷ

(this also follows from Eq. 12.109).

B̄ 6= 0, but since v
B

= 0 in S̄, there is no magnetic force anyway, and F̄ =
�

4⇡✏
0

q
A

q
B

d2

ŷ (as before).
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Problem 12.46
System A: Use Eqs. 12.93 and 12.112, with ✓ = 90�, R = d ŷ, and �̂ = ẑ:

E = � q

4⇡✏
0

�

d2

ŷ ; B = � q

4⇡✏
0

v

c2

�

d2

ẑ ; where � =
1p

1� v2/c2

.

[Note that (E2 � B2c2) =
�

q

4⇡✏

0

d

2

�
2

�2

�
1 � v

2

c

2

�
=
�

q

4⇡✏

0

d

2

�
2 is invariant, since it doesn’t depend on v (see

Prob. 12.47b for the general proof). We’ll use this as a check.]

F = q
�
E + (�vx̂)⇥B

�
= � q2

4⇡✏
0

�

d2

�
ŷ � v2

c2

(x̂⇥ẑ)
�

= � q2

4⇡✏
0

�

d2

�
1 +

v2

c2

�
ŷ.

System B : The speed of �q is v
B

=
v + v

1 + v2/c2

=
2v

(1 + v2/c2)

�
B

=
1q

1� 4v

2

/c

2

(1+v

2

/c

2

)

2

=
(1 + v2/c2)q
1� 2 v

2

c

2

+ v

4

c

4

=
(1 + v2/c2)
(1� v2/c2)

= �2

�
1 +

v2

c2

�
; v

B

�
B

= 2v�2.

) E = � q

4⇡✏
0

1
d2

�2

�
1 +

v2

c2

�
ŷ ; B = � q

4⇡✏
0

2v

c2

�2

d2

ẑ.

⇥
Check : (E2 �B2c2) =

�
q

4⇡✏

0

d

2

�
2

�4

�
1 + 2v

2

c

2

+ v

4

c

4

� 4v

2

c

2

�
=
�

q

4⇡✏

0

d

2

�
2

�4

1

�

4

=
�

q

4⇡✏

0

d

2

�
2 X
⇤

F = qE = � q2

4⇡✏
0

�2

d2

�
1 +

v2

c2

�
ŷ (+q at rest ) no magnetic force). [Check : Eq. 12.67 ) F

A

= 1

�

F
B

. X]

System C : v
C

= 0. E = � q

4⇡✏
0

1
d2

ŷ; B = 0. F = qE = � q2

4⇡✏
0

1
d2

ŷ.

[The relative velocity of B and C is 2v/(1 + v2/c2), and corresponding � is �2(1 + v2/c2). So Eq. 12.67
) F

C

= 1

�

2

(1+v

2

/c

2

)

F
B

. X]
Summary : ✓

� q

4⇡✏
0

d2

◆
�ŷ

✓
� q

4⇡✏
0

d2

◆
�2

�
1 + v2/c2

�
ŷ

✓
� q

4⇡✏
0

d2

◆
ŷ✓

� q

4⇡✏
0

d2

◆
v

c2

�ẑ
✓
� q

4⇡✏
0

d2

◆
2v

c2

�2ẑ 0✓
� q2

4⇡✏
0

d2

◆
�
�
1 + v2/c2

�
ŷ

✓
� q2

4⇡✏
0

d2

◆
�2

�
1 + v2/c2

�
ŷ

✓
� q2

4⇡✏
0

d2

◆
ŷ

Problem 12.47

(a) From Eq. 12.109:

Ē·B̄ = Ē
x

B̄
x

+ Ē
y

B̄
y

+ Ē
z

B̄
z

= E
x

B
x

+ �2(E
y

� vB
z

)(B
y

+
v

c2

E
z

) + �(E
z

+ vB
y

)(B
z

� v

c2

E
y

)

= E
x

B
x

+ �2{E
y

B
y

+
v

c2

E
y

E
z� � vB

y

B
z� � v2

c2

E
z

B
z

+ E
z

B
z

� v

c2

E
y

E
z� + vB

y

B
z� � v2

c2

E
y

B
y

}

= E
x

B
x

+ �2

✓
E

y

B
y

⇣
1� v2

c2

⌘
+ E

z

B
z

⇣
1� v2

c2

⌘◆
= E

x

B
x

+ E
y

B
y

+ E
z

B
z

= E·B. qed
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(b) Ē2 � c2B̄2 =
⇥
E2

x

+ �2(E
y

� vB
z

)2 + �2(E
z

+ vB
y

)2
⇤
� c2

⇥
B2

x

+ �2

�
B

y

+
v

c2

E
z

�
2 + �2

�
B

z

� v

c2

E
y

�⇤
= E2

x

+ �2

�
E2

y

� 2E
y

vB
z� + v2B2

z

+ E2

z

+ 2E
z

vB
y� + v2B2

y

� c2B2

y

� c22
v

c2

B
y

E
z�

� c2

v2

c4

E2

z

� c2B2

z

+ c22
v

c2

B
z

E
y� � c2

v2

c4

E2

y

�
� c2B2

x

= E2

x

� c2B2

x

+ �2

✓
E2

y

⇣
1� v2

c2

⌘
+ E2

z

⇣
1� v2

c2

⌘
� c2(B2

y

)
⇣
1� v2

c2

⌘
� c2B2

z

⇣
1� v2

c2

⌘◆

= (E2

x

+ E2

y

+ E2

z

)� c2(B2

x

+ B2

y

+ B2

z

) = E2 �B2c2. qed

(c) No. For if B = 0 in one system, then (E2 � c2B2) is positive. Since it is invariant, it must be positive in
any system. ) E 6= 0 in all systems.
Problem 12.48
(a) Making the appropriate modifications in Eq. 9.48 (and picking � = 0 for convenience),

E(x, y, z, t) = E
0

cos(kx� !t) ŷ, B(x, y, z, t) =
E

0

c
cos(kx� !t) ẑ, where k ⌘ !

c
.

(b) Using Eq. 12.109 to transform the fields:

Ē
x

= Ē
z

= 0, Ē
y

= �(E
y

� vB
z

) = �E
0

h
cos(kx� !t)� v

c
cos(kx� !t)

i
= ↵E

0

cos(kx� !t),

B̄
x

= B̄
y

= 0, B̄
z

= �(B
z

� v

c2

E
y

) = �E
0


1
c

cos(kx� !t)� v

c2

cos(kx� !t)
�

= ↵
E

0

c
cos(kx� !t),

where ↵ ⌘ �
⇣
1� v

c

⌘
=

s
1� v/c

1 + v/c
.

Now the inverse Lorentz transformations (Eq. 12.19) ) x = �(x̄ + vt̄) and t = �
⇣
t̄ +

v

c2

x̄
⌘
, so

kx� !t = �
h
k(x̄ + vt̄)� !

⇣
t̄ +

v

c2

x̄
⌘i

= �
h⇣

k � !v

c2

⌘
x̄� (! � kv)t̄

i
= k̄x̄� !̄t̄,

where, recalling that k = !/c): k̄ ⌘ �
⇣
k � !v

c2

⌘
= �k(1� v/c) = ↵k and !̄ ⌘ �!(1� v/c) = ↵!.

Conclusion:
Ē(x̄, ȳ, z̄, t̄) = Ē

0

cos(k̄x̄� !̄t̄) ŷ, B̄(x̄, ȳ, z̄, t̄) =
Ē

0

c
cos(k̄x̄� !̄t̄) ẑ,

where Ē
0

= ↵E
0

, k̄ = ↵k, !̄ = ↵!, and ↵ ⌘

s
1� v/c

1 + v/c
.

(c) !̄ = !

s
1� v/c

1 + v/c
. This is the Doppler shift for light. �̄ =

2⇡
k̄

=
2⇡
↵k

=
�

↵
. The velocity of the wave

in S̄ is v̄ =
!̄

2⇡
�̄ =

!

2⇡
� = c. Yup, this is exactly what I expected (the velocity of a light wave is the same

in any inertial system).
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(d) Since the intensity goes like E2, the ratio is
Ī

I
=

Ē2

0

E2

0

= ↵2 =
1� v/c

1 + v/c
.

Dear Al,
The amplitude, frequency, and intensity of the light will all decrease to zero as you run faster

and faster. It’ll get so faint you won’t be able to see it, and so red-shifted even your night-vision
goggles won’t help. But it’ll still be going 3⇥ 108 m/s relative to you. Sorry about that.

Sincerely,

David

Problem 12.49
t̄02 = ⇤0

�

⇤2

�

t�� = ⇤0

0

⇤2

2

t02 + ⇤0

1

⇤2

2

t12 = �t02 + (���)t12 = �(t02 � �t12).
t̄03 = ⇤0

�

⇤3

�

t�� = ⇤0

0

⇤3

3

t03 + ⇤0

1

⇤3

3

t13 = �t03 + (���)t13 = �(t03 � �t13) = �(t03 + �t31).
t̄
23

= ⇤2

�

⇤3

�

t�� = ⇤2

2

⇤3

3

t23 = t23.
t̄
31

= ⇤3

�

⇤1

�

t�� = ⇤3

3

⇤1

0

t30 + ⇤3

3

⇤1

1

t31 = (���)t30 + �t31 = �(t31 � �t03).
t̄
12

= ⇤1

�

⇤2

�

t�� = ⇤1

0

⇤2

2

t02 + ⇤1

1

⇤2

2

t12 = (���)t02 + �t12 = �(t12 � �t02).
Problem 12.50

Suppose t⌫µ = ±tµ⌫ (+ for symmetric, � for antisymmetric).

t̄� = ⇤

µ

⇤�

⌫

tµ⌫

t̄� = ⇤�

µ

⇤

⌫

tµ⌫ = ⇤�

⌫

⇤

µ

t⌫µ [Because µ and ⌫ are both summed from 0! 3,

it doesn’t matter which we call µ and and which call ⌫.]

= ⇤

µ

⇤�

µ

(±tµ⌫) [Using symmetry of tµ⌫ , and writing the ⇤’s in the other order.]

= ±t̄�. qed

Problem 12.51

Fµ⌫F
µ⌫

= F 00F 00 � F 01F 01 � F 02F 02 � F 03F 03 � F 10F 10 � F 20F 20 � F 30F 30

+ F 11F 11 + F 12F 12 + F 13F 13 + F 21F 21 + F 22F 22 + F 23F 23 + F 31F 31 + F 32F 32 + F 33F 33

= �(E
x

/c)2 � (E
y

/c)2 � (E
z

/c)2 � (E
x

/c)2 � (E
y

/c)2 � (E
z

/c)2 + B2

z

+ B2

y

+ B2

z

+ B2

x

+ B2

y

+ B2

x

= 2B2 � 2E2/c2 = 2
⇣
B2 � E2

c2

⌘
,

which, apart from the constant factor �2/c2, is the invariant we found in Prob. 12.47(b).

Gµ⌫G
µ⌫

= 2(E2/c2 �B2) (the same invariant).

Fµ⌫G
µ⌫

= �2(F 01G01 + F 02G02 + F 03G03) + 2(F 12G12 + F 13G13 + F 23G23)

= �2
✓

1
c
E

x

B
x

+
1
c
E

y

B
y

+
1
c
E

z

B
z

◆
+ 2[B

z

(�E
z

/c) + (�B
y

)(E
y

/c) + B
x

(�E
x

/c)]

= �2
c
(E ·B)� 2

c
(E ·B) = �4

c
(E ·B),
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which, apart from the factor �4/c, is the invariant we found of Prob. 12.47(a). [These are, incidentally, the
only fundamental invariants you can construct from E and B.]
Problem 12.52

E = 1

4⇡✏

0

2�

x

x̂ = µ

0

2⇡

�c

2

x

x̂

B = µ

0

4⇡

2�v

x

ŷ = µ

0

2⇡

�v

x

ŷ

9=; Fµ⌫ =
µ

0

�

2⇡x

0BB@
0 c 0 0
�c 0 0 �v
0 0 0 0
0 v 0 0

1CCA Gµ⌫ =
µ

0

�

2⇡x

0BB@
0 0 v 0
0 0 0 0
�v 0 0 �c
0 0 c 0

1CCA
Problem 12.53

@
⌫

Fµ⌫ = µ
0

Jµ. Di↵erentiate: @
µ

@
⌫

Fµ⌫ = µ
0

@
µ

Jµ.
But @

µ

@
⌫

= @
⌫

@
µ

(the combination is symmetric) while F ⌫µ = �Fµ⌫ (antisymmetric).
) @

µ

@
⌫

Fµ⌫ = 0. [Why? Well, these indices are both summed from 0 ! 3, so it doesn’t matter which we
call µ, which ⌫: @

µ

@
⌫

Fµ⌫ = @
⌫

@
µ

F ⌫µ = @
µ

@
⌫

(�Fµ⌫) = �@
µ

@
⌫

Fµ⌫ . But if a quantity is equal to minus itself,
it must be zero.] Conclusion: @

µ

Jµ = 0. qed
Problem 12.54

We know that @
⌫

Gµ⌫ = 0 is equivalent to the two homogeneous Maxwell equations, r·B = 0 and r⇥E =
�@B

@t

. All we have to show, then, is that @
�

F
µ⌫

+ @
µ

F
⌫�

+ @
⌫

F
�µ

= 0 is also equivalent to them. Now this
equation stands for 64 separate equations (µ = 0! 3, ⌫ = 0! 3, � = 0! 3, and 4⇥ 4⇥ 4 = 64). But many
of them are redundant, or trivial.

Suppose two indices are the same (say, µ = ⌫). Then @
�

F
µµ

+ @
µ

F
µ�

= @
µ

F
�µ

= 0. But F
µµ

= 0 and
F

µ�

= �F
�µ

, so this is trivial: 0 = 0. To get anything significant, then, µ, ⌫, � must all be di↵erent. They
could beall spatial (µ, ⌫,� = 1, 2, 3 = x, y, z — or some permutation thereof), or one temporal and two spatial
(µ = 0, ⌫,� = 1, 2 or 2, 3, or 1, 3 — or some permutation). Let’s examine these two cases separately.
All spatial : say, µ = 1, ⌫ = 2, � = 3 (other permutations yield the same equation, or minus it.)

@
3

F
12

+ @
1

F
23

+ @
2

F
31

= 0) @

@z
(B

z

) +
@

@x
(B

x

) +
@

@y
(B

y

) = 0)r·B = 0.

One temporal : say, µ = 0, ⌫ = 1, � = 2 (other permutations of these indices yield same result, or minus it).

@
2

F
01

+ @
0

F
12

+ @
1

F
31

= 0) @

@y

�
�E

x

c

�
=

@

@(ct)
(B

z

) +
@

@x

�
+

E
y

c

�
= 0.

or: �@B

z

@t

+
�

@E

x

@y

� @E

y

@x

�
= 0, which is the z-component of �@B

@t

= r⇥E. (If µ = 0, ⌫ = 1,� = 2, we get the
y component; for ⌫ = 2,� = 3 we get the x component.)

Conclusion: @
�

F
µ⌫

+ @
µ

F
⌫�

+ @
⌫

F
�µ

= 0 is equivalent to r·B = 0 and @B

@t

= �r⇥E, and hence to
@

⌫

Gµ⌫ = 0. qed

Problem 12.55

K0 = q⌘
⌫

F 0⌫ � q(⌘
1

F 01 + ⌘
2

F 02 + ⌘
3

F 03) = q(⌘·E)/c =
q

c
�u·E. Now from Eq. 12.70 we know that

K0 = 1

c

dW

d⌧

, where W is the energy of the particle. Since d⌧ = 1

�

dt, we have:

1
c
�

dW

dt
=

q

c
�(u·E)) dW

dt
= q(u·E)

This says the power delivered to the particle is force (qE) times velocity (u) — which is as it should be.
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Problem 12.56

@0� =
@

@x̄
0

� = �1
c

@

@ t̄
� =

1
c

�@�
@t

@t

@ t̄
+
@�

@x

@x

@ t̄
+
@�

@y

@y

@ t̄
+
@�

@z

@z

@ t̄

�
From Eq. 12.19, we have:

@t

@ t̄
= �, @x

@

¯

t

= �v, @y

@

¯

t

= @z

@

¯

t

= 0.

So @0� = �1
c
�
�@�
@t

+ v
@�

@x

�
or (since ct = x0 = �x

0

): @0� = �
� @�
@x

0

� v

c

@�

@x1

�
= �

⇥
(@0�)� �(@1�)

⇤
.

@1� =
@

@x̄
� =

@�

@t

@t

@x1

+
@�

@x

@x

@x̄
+
@�

@y

@y

@x̄
+
@�

@z

@z

@x̄
= �

v

c2

@�

@t
+�

@�

@x
= �

� @�
@x

1

� v

c

@�

@x
0

�
= �

⇥
(@1�)� �(@0�)

⇤
.

@2� =
@�

@ȳ
=
@�

@t

@t

@ȳ
+
@�

@x

@x

@ȳ
+
@�

@y

@y

@ȳ
+
@�

@z

@z

@ȳ
=
@�

@y
= @2�.

@3� =
@�

@z̄
=
@�

@t

@t

@z̄
+
@�

@x

@x

@z̄
+
@�

@y

@y

@z̄
+
@�

@z

@z

@z̄
=
@�

@z
= @3�.

Conclusion: @µ� transforms in the same way as aµ (Eq. 12.27)—and hence is a contravariant 4-vector. qed

Problem 12.57
According to Prob. 12.54, @G

µ⌫

@x

⌫

= 0 is equivalent to Eq. 12.130. Using Eq. 12.133, we find (in the notation
of Prob. 12.56):

@F
µ⌫

@x�

+
@F

⌫�

@xµ

+
@F

�µ

@x⌫

= @
�

F
µ⌫

+ @
µ

F
⌫�

+ @
⌫

F
�µ

= @
�

(@
µ

A
⌫

� @
⌫

A
µ

) + @
µ

(@
⌫

A
�

� @
�

A
⌫

) + @
⌫

(@
�

A
µ

� @
µ

A
�

)
= (@

�

@
µ

A
⌫

� @
µ

@
�

A
⌫

) + (@
µ

@
⌫

A
�

� @
⌫

@
µ

A
�

) + (@
⌫

@
�

A
µ

� @
�

@
⌫

A
µ

) = 0. qed

[Note that @
�

@µA
⌫

= @

2

A

⌫

@x

�

@x

⌫

= @

2

A

⌫

@x

⌫

@x

�

= @
⌫

@
�

A
⌫

, by equality of cross-derivatives.]

Problem 12.58
From Eqs. 12.40 and 12.42, ⌘µ = �(c,v), while r µ = (ct � ct

r

, r � w(t
r

)) = (r , r ), so ⌘⌫ r
⌫

=
��cr + �v · r = ��(r c� r · v).

� q

4⇡✏
0

c

⌘0

(⌘⌫ r
⌫

)
=

q

4⇡✏
0

c

�c

�(r c� r · v)
=

1
4⇡✏

0

c

qc

(r c� r · v)
=

1
c
V

(Eq. 10.46),

� q

4⇡✏
0

c

⌘

(⌘⌫ r
⌫

)
=

q

4⇡✏
0

c

�v
�(r c� r · v)

=
1

4⇡✏
0

c

qv
(r c� r · v)

= A

(Eq. 10.47), so (Eq. 12.132)

� q

4⇡✏
0

c

⌘µ

(⌘⌫ r
⌫

)
= Aµ. X
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Problem 12.59

3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X

✯X̄

❑Ȳ

❄φ ✲ x̄

✻ȳ
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Step 1 : rotate from xy to XY , using Eq. 1.29:

X = cos�x + sin� y

Y = � sin�x + cos� y

Step 2 : Lorentz-transform from XY to X̄Ȳ , using
Eq. 12.18:

X̄ = �(X � vt) = �[cos�x + sin� y � �ct]
Ȳ = Y = � sin�x + cos� y

Z̄ = Z = z

ct̄ = �(ct� �X) = �
⇥
ct� �(cos�x + sin� y)

⇤
Step 3 : Rotate from X̄Ȳ to x̄ȳ, using Eq. 1.29 with negative �:

x̄ = cos� X̄ � sin� Ȳ = � cos�[cos�x + sin� y � �ct]� sin�[� sin�x + cos� y]

= (� cos2 �+ sin2 �)x + (� � 1) sin� cos� y � �� cos� (ct)
ȳ = sin� X̄ + cos� Ȳ = � sin�(cos�x + sin� y � �ct) + cos�(� sin� c + cos� y)

= (� � 1) sin� cos�x + (� sin2 �+ cos2 �)y � �� sin� (ct)

In matrix form:

0BB@
ct̄
x̄
ȳ
z̄

1CCA =

0BB@
� ��� cos� ��� sin� 0

��� cos� (� cos2 �+ sin2 �) (� � 1) sin� cos� 0
��� sin� (� � 1) sin� cos� (� sin2 �+ cos2 �) 0

0 0 0 1

1CCA
0BB@

ct
x
y
z

1CCA
Problem 12.60

4

✲π ✛ p
before (CM)

K Σ
after (CM)

✲
π p

Before

✲
K Σ

After

In CM : ✲ ✛p p

Before

✒

✠

p

p

rµ

❘

sµ
■

φ

After

✲ x
✻
y

(p = magnitude of 3-momentum
in CM, φ = CM scattering angle)
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In center-of-momentum system, threshold occurs when incident en-
ergy is just su�cient to cover the rest energy of the resulting particles,
with none “wasted” as kinetic energy. Thus, in lab system, we want
the outgoing K and ⌃ to have the same velocity, at threshold:

1

✲

π
✛

p
before (CM)

K Σ
after (CM)

✲

π p

Before

✲

K Σ

After
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Initial momentum: p
⇡

; Initial energy of ⇡: E2 � p2c2 = m2c4 ) E2

⇡

= m2

⇡

c4 + p2

⇡

c2.

Total initial energy: m
p

c2 =
p

m2

⇡

c4 + p2

⇡

c2. These are also the final energy and momentum: E2 � p2c2 =
(m

K

+ m
⌃

)2c4. ⇣
m

p

c2 +
p

m2

⇡

c4 + p2

⇡

c2

⌘
2

� p2

⇡

c2 = (m
K

+ m
⌃

)2c4

m2

p

c4� + 2m
p

c2

c4

p
m2

⇡

c2 + p2

⇡

c + m2

⇡

c4� + p2

⇡

c2� � p2

⇡

c2� = (m
K

+ m
⌃

)2c4�

2m
p

c

p
m2

⇡

c2 + p2

⇡

= (m
K

+ m
⌃

)2 �m2

p

�m2

⇡
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(m2

⇡

c2 + p2

⇡

)
4m2

p

c2

= (m
K

+ m
⌃

)4 � 2(m2

p

+ m2

⇡

)(m
K

+ m
⌃

)2 + m4

p

+ m4

⇡

+ 2m2

p

m2

⇡

4m2

p

c2

p2

⇡

= (m
K

+ m
⌃

)4 � 2(m2

p

+ m2

⇡

)(m
K

+ m
⌃

)2 + (m2

p

�m2

⇡

)2

p
⇡

=
c

2m
p

q
(m

K

+ m
⌃

)4 � 2(m2

p

+ m2

⇡

)(m
K

+ m
⌃

)2 + (m2

p

�m2

⇡

)2

= 1

(2m

p

c

2

)c

q
(m

K

c2 + m
⌃

c2)4 � 2
�
(m

p

c2)2 + (m
⇡

c2)2
�
(m

K

c2 + m
⌃

c2)2 +
�
(m

p

c2)2 � (m
⇡

c2)2
�
2

= 1

2c(900)

q
(1700)4 � 2

�
(900)2 + (150)2

�
(1700)2 +

�
(900)2 � (150)2

�
2

= 1

1800c

p
(8.35⇥ 1012)� (4.81⇥ 1012) + (0.62⇥ 1012) = 1

1800c

(2.04⇥ 106) = 1133 MeV/c

Problem 12.61

4

✲π ✛ p
before (CM)

K Σ
after (CM)

✲
π p

Before

✲
K Σ

After

In CM : ✲ ✛p p

Before

✒

✠

p

p

rµ

❘

sµ
■

φ

After

✲ x
✻
y

(p = magnitude of 3-momentum
in CM, φ = CM scattering angle)
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Outgoing 4-momentua: rµ =
�

E

c

, p cos�, p sin�, 0
�
; sµ =

�
E

c

,�p cos�,�p sin�, 0
�
.

5

In Lab: ✲

Before

✒

❘

r̄µ

s̄µ

θ Problem: calculate θ, in terms of p, φ.

θ
1

τ/ sinφ√ 1+
(τ

/ sin
φ)

2

✲ x

✻
y

d/2

−d/2 −q

+q

✕

l
︷︸︸︷

d
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Lorentz transformation: r̄
x

= �(r
x

� �r0); r̄
y

= r
y

; s̄
x

= �(s
x

� �s0); s̄
y

= s
y

.

Now E = �mc2; p = ��mv (v here is to the left; E2 � p2c2 = m2c4, so � = �pc

E

.

) r̄
x

= �
�
p cos�+ pc

E

E

c

�
= �p(1 + cos�); r̄

y

= p sin�; s̄
x

= �p(1� cos�); s̄
y

= �p sin�.

cos ✓ =
r̄·̄s
r̄s̄

=
�2p2(1� cos2 �)� p2 sin2 �q⇥

�2p2(1 + cos�)2 + p2 sin2 �
⇤⇥
�2p2(1� cos�)2 + p2 sin2 �

⇤
=

(�2 � 1) sin2 �q⇥
�2(1 + cos�)2 + sin2 �

⇤⇥
�2(1� cos�)2 + sin2 �

⇤
=

(�2 � 1)rh
�2

�
1+cos �

sin �

�
2 + 1

ih
�2

�
1�cos �

sin �

�
2 + 1

i =
(�2 � 1)q�

�2 cot2 �

2

+ 1
��

tan2

�

2

+ 1
�
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cos ✓ =
!q�

1 + cot2 �

2

+ ! cot2 �

2

��
1 + tan2

�

2

+ ! tan2

�

2

� (where ! ⌘ �2 � 1)

=
!q�

csc2

�

2

+ ! cot2 �

2

��
sec2

�

2

+ ! tan2

�

2

� =
! sin �

2

cos �

2q�
1 + ! cos2 �

2

��
1 + ! sin2

�

2

�
=

1

2

! sin�q�
1 + ! 1

2

(1 + cos�)
��

1 + ! 1

2

(1� cos�)
� =

sin�q⇥�
2

!

+ 1
�

+ cos�
⇤ ⇥�

2

!

+ 1
�
� cos�

⇤
=

sin�q�
2

!

+ 1
�
2 � cos2 �

=
sin�q

4

!

2

+ 4

!

+ sin2 �
=

1q
1 +

�
⌧

2

sin

2

�

� , where ⌧2 =
4
!2

+
4
!

.

sin ✓ = ⌧

sin �

. ⌧2 = 4

!

2

(1 + !) = 4

(�

2�1)

2

�2, so tan ✓ = 2�

(�

2�1) sin �

.

Or, since (�2 � 1) = �2

⇣
1� 1

�

2

⌘
= �2

v

2

c

2

, tan ✓ =
2c2

�v2 sin�

5

In Lab: ✲

Before

✒

❘

r̄µ

s̄µ

θ Problem: calculate θ, in terms of p, φ.

θ
1

τ/ sinφ√ 1+
(τ

/ sin
φ)

2

✲ x

✻
y

d/2

−d/2 −q

+q

✕

l
︷︸︸︷

d
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Problem 12.62
dp

d⌧

= K (a constant) ) dp

dt

dt

d⌧

= K. But dt

d⌧

= 1p
1�u

2

/c

2

; p = mup
1�u

2

/c

2

.

) d

dt

⇣
up

1�u

2

/c

2

⌘
= K

m

p
1� u2/c2. Multiply by dt

dx

= 1

u

:

dt

dx

d

dt

✓
up

1� u2/c2

◆
=

d

dx

✓
up

1� u2/c2

◆
=

K

m

p
1� u2/c2

u
. Let w =

up
1� u2/c2

.

dw

dx
=

K

m

1
w

; w
dw

dx
=

1
2

d

dx
w2 =

k

m
;

d(w2)
dx

=
2K

m
) d(w2) =

2K

m
(dx).

) w2 = 2K

m

x+ constant. But at t = 0, x = 0 and u = 0 (so w = 0), and hence the constant is 0.

w2 =
2K

m
x =

u2

1� u2/c2

; u2 =
2Kx

m
� 2Kx

mc2

u2 ; u2

�
1 +

2Kx

mc2

�
=

2Kx

m
.

u2 =
2Kx/m

1 + 2Kx

mc

2

=
c2

1 +
�

mc

2

2Kx

� ;
dx

dt
=

cq
1 +

�
mc

2

2Kx

� ; ct =
Z r

1 +
�mc2

2Kx

�
dx

Let mc

2

2K

= a2; ct =
R p

x+a

2p
x

dx. Let x = y2; dx = 2y dy;
p

x = y.

ct =
Z p

y2 + a2

y
2y dy = 2

Z p
y2 + a2 dy =

h
y
p

y2 + a2 + a2 ln(y +
p

y2 + a2)
i

+ constant.

At t = 0, x = 0) y = 0. ) 0 = a2 ln a+ constant, so constant = �a2 ln a.

) ct = y
p

y2 + a2 = a2 ln
�
y/a +

p
(y/a)2 + 1

�
= a2

⇣y

a

⌘r⇣y

a

⌘
2

+ 1 + ln
✓

y

a
+
r⇣y

a

⌘
2

+ 1
◆�

Let: z = y

a

=
p

x
q

2K

mc

2

=
q

2Kx

mc

2

= z. Then
2Kt

mc
= z
p

1 + z2 + ln(z +
p

1 + z2).
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Problem 12.63

5

In Lab: ✲

Before

✒

❘

r̄µ

s̄µ

θ Problem: calculate θ, in terms of p, φ.

θ
1

τ/ sinφ√ 1+
(τ

/ sin
φ)

2

✲ x

✻
y

d/2

−d/2 −q

+q

✕

l
︷︸︸︷

d
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r
(a) x(t) = c

↵

hp
1 + (↵t)2 � 1

i
, where ↵ = F

mc

. The force of +q on
�q will be the mirror image of the force of �q on +q (in the x-axis),
so the net force is in the x direction (the net magnetic force is zero).
So all we need is the x-component of E.

The field at +q due to �q is: (Eq. 10.72)

E = � q

4⇡✏
0

r
(r ·u)3

⇥
u(c2 � v2) + u(r ·a)� a(r ·u)

⇤
.

u = cr � v) u
x

= c lr � v = 1r (cl � v r ); r ·u = cr � r ·v = (cr � lv); r ·a = la. So:

E
x

= � q

4⇡✏
0

r
(cr � vl)3

⇥ 1
r (cl � v r )(c2 � v2) =

1
r (cl � v r�)la� a(cr � lv�)| {z }
1r ca(l2 � r 2) = �cad2/r

⇤

= � q

4⇡✏
0

1
(cr � vl)3

⇥
(cl � v r )(c2 � v2)� cad2

⇤
.

The force on +q is qE
x

, and there is an equal force on �q, so the net force on the dipole is:

F = � 2q2

4⇡✏
0

1
(cr � lv)3

⇥
(cl � v r )(c2 � v2)� cad2

⇤
x̂

It remains to determine r , l,
v, and a, and plug these in.

v(t) =
dx

dt
=

c

↵

1
2

1p
1 + (↵t)2

2↵2t =
c↵tp

1� (↵t)2
; v = v(t

r

) =
c↵t

r

T
, where T =

p
1 + (↵t

r

)2.

a(t
r

) =
dv

dt
r

=
c↵

T
+ c↵t

r

✓
�1

2

◆
2↵2t

r

T 3

=
c↵

T 3

�
1 + (↵t

r

)2 � (↵t
r

)2
�

=
c↵

T 3

Now calculate t
r

: c2(t� t
r

)2 = r 2 = l2 + d2; l = x(t)� x(t
r

) = c

↵

⇥p
1 + (↵t)2 �

p
1 + (↵t

r

)2
⇤
, so

t2�� 2tt
r

+ t2
r

� = 1

↵

2

⇥
1 + (↵t)2� + 1 + (↵t

r

)2� � 2
p

1 + (↵t)2
p

1 + (↵t
r

)2
⇤
+ (d/c)2

(F)
p

1 + (↵t)2
p

1 + (↵t
r

)2 = 1 + ↵2tt
r

+ 1

2

�
↵d

c

�
2. Square both sides:

1� + (↵t)2 + (↵t
r

)2 + ↵4t2t2
r

� = 1� + ↵4t2t2
r

� +
1
4

⇣↵d

c

⌘
4

+ 2↵2tt
r

+
⇣↵d

c

⌘
2

+ ↵2tt
r

⇣↵d

c

⌘
2

t2 + t2
r

� 2tt
r

� tt
r

⇣↵d

c

⌘
2

�
⇣d

c

⌘
2

� ↵2

4

⇣d

c

⌘
4

= 0

At this point we could solve for t
r

(in terms of t), but since v and a are already expressed in terms of t
r

, it is
simpler to solve for t (in terms of t

r

), and express everything in terms of t
r

:

t2 � tt
r


2 +

⇣↵d

c

⌘
2

�
+

t2
r

�
⇣d

c

⌘
2

� ↵2

4

⇣d

c

⌘
4

�
= 0 =)

t =
1
2

(
t
r


2 +

⇣↵d

c

⌘
2

�
±

s
t2
r


4� + 4

⇣↵d

c

⌘
2

+
⇣↵d

c

⌘
4

�
� 4t2

r

� + 4
⇣d

c

⌘
2

+ ↵2

⇣d

c

⌘
4

)

= t
r


1 +

1
2

⇣↵d

c

i
)2
�
±

s⇥
1 + (↵t

r

)2
⇤⇣d

c

⌘
2


1 +

⇣↵d

2c

⌘�
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Which sign? For small ↵ we want t ⇡ t
r

+ d/c, so we need the + sign:

t = t
r


1 +

1
2

⇣↵d

c

⌘
2

�
+

d

c
TD, where D =

r
1 +

⇣↵d

2c

⌘
2

So r = c(t� t
r

)) r = ct

r

2

�
↵d

c

�
2 + dTD. Now go back to Eq. (F) and solve for

p
1 + (↵t)2:

p
1 + (↵t)2 =

1
T

⇢
1 +

1
2

⇣↵d

c

⌘
2

+ ↵2t
r


t
r

⇣
1 +

1
2

⇣↵d

c

⌘
2

�
+

d

c
TD

��
=

1
T

⇢⇥
1 + (↵t

r

)2| {z }
T 2

⇤
1 +

1
2

⇣↵d

c

⌘
2

�
+
↵2t

r

d

c
TD

�
=

1 +

1
2

⇣↵d

c

⌘
2

�
T +

↵2t
r

d

c
D

l =
c

↵

hp
1 + (↵t2)�

p
1 + (↵t

r

)2
i

=
c

↵

⇢
1� +

1
2

⇣↵d

c

⌘
2

�
T +

↵2t
r

d

c
D � T�

�
= ↵d

⇣ d

2c
T + t

r

D
⌘

Putting all this in, the numerator in square brackets in F becomes:

[ ] =
n

c↵d
⇣ d

2c
T + t

r

D
⌘
� c↵t

r

T

hct
r

2

⇣↵d

c

⌘
2

+ dTD
ioh

c2 � c2↵2t2
r

T 2

i
� c

c↵

T
3

d2

= c↵d
h d

2c
T + t

r

D� � d(at
r

)2

2cT
� t

r

D�
i c2

T
2

⇥
1 + (↵t

r

)2� � (↵t
r

)2� ⇤
� c2↵d2

T 3

=
c2↵d2

T 3

h1
2
T 2 � 1

2
(↵t

r

)2 � 1
i

=
c2↵d2

2T 3

h
1 + (↵t

r

)2 � (↵t
r

)2 � 2
i

= �c2↵d2

2T 3

) F =
q2

4⇡✏
0

c2↵d2⇥
(cr � lv)T

⇤
3

x̂. It remains to compute the denominator:

(cr � lv)T =
⇢

c


ct

r

2

⇣↵d

c

⌘
2

+ dTD

�
� ↵d

⇣ d

2c
T + t

r

D
⌘c↵t

r

T

�
T

=
h1
2
↵2t

r

d2� + cdTD � 1
2
↵2t

r

d2� � cd(↵t
r

)2

T
D
i
T = cdD

⇥
T 2 � (↵t

r

)2| {z }
1+(↵t

r

)

2� �(↵t

r

)

2�

⇤
= dcD

) F =
q2

4⇡✏
0

c2d2↵

c3d3D3

x̂ =
q2

4⇡✏
0

↵

cd
⇥
1 +

�
↵d

2c

�
2

⇤
3/2

x̂
⇣
↵ =

F

mc

⌘
Energy must come from the “reservoir” of energy stored in the electromagnetic fields.

(b) F = mc↵ =
1
2
"

q2

4⇡✏
0

↵

cd
⇥
1 +

�
↵d

2c

⇤
2

�
3/2

)
h
1 +

⇣↵d

2c

⌘
2

i
3/2

=
q2

8⇡✏
0

mc2d
=
⇣ µ

0

q2

8⇡md

⌘
.

(force on one end only)

) ↵ =
2c

d

r⇣ µ
0

q2

8⇡md

⌘
2/3

� 1 , so F =
2mc2

d

r⇣ µ
0

q2

8⇡md

⌘
2/3

� 1.
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Problem 12.64

(a) Aµ = (V/c, A
x

, A
y

, A
z

) is a 4-vector (like xµ = (ct, x, y, z)), so (using Eq. 12.19): V = �(V̄ + vĀ
x

). But
V̄ = 0, and

Ā
x

=
µ

0

4⇡
(m⇥r̄)

x

r̄3

Now (m⇥r̄)
x

= m
y

z̄ �m
z

ȳ = m
y

z �m
z

y. So

V = �v
µ

0

4⇡
(m

y

z �m
z

y)
r̄3

Now x̄ = �(x � vt) = �R
x

, ȳ = y = R
y

, z̄ = z = R
z

, where R is the vector (in S) from the (instantaneous)
location of the dipole to the point of observation. Thus

r̄2 = �2R2

x

+ R2

y

+ R2

z

= �2(R2

x

+ R2

y

+ R2

z

) + (1� �2)(R2

y

+ R2

z

) = �2

�
R

2

� v2

c2

R2 sin2 ✓
�

(where ✓ is the angle between R and the x-axis, so that R2

y

+ R2

z

= R2 sin2 ✓).

) V =
µ

0

4⇡
v�(m

y

R
z

�m
z

R
y

)

�3R3

�
1� v

2

c

2

sin2 ✓
�
3/2

; v·(m⇥R) = v(m⇥R)
x

= v(m
y

R
z

�m
z

R
y

), so

V =
µ

0

4⇡
v·(m⇥R)

�
1� v

2

c

2

�
R3

�
1� v

2

c

2

sin2 ✓
�
3/2

,

or, using µ
0

= 1

✏

0

c

2

and v·(m⇥R) = R·(v⇥m): V =
1

4⇡✏
0

bR·(v⇥m)
�
1� v

2

c

2

�
c2R2

�
1� v

2

c

2

sin2 ✓
�
3/2

(b) In the nonrelativistic limit (v2 ⌧ c2):

V =
1

4⇡✏
0

bR·(v⇥m)
c2R2

=
1

4⇡✏
0

bR·p
R2

, with p =
v⇥m

c2

,

which is the potential of an electric dipole.
Problem 12.65

(a) B = �µ

0

2

Kŷ (Eq. 5.58); N = m⇥B (Eq. 6.1), so N = �µ

0

2

mK(ẑ⇥ŷ).

N =
µ

0

2
mKx̂ = µ

0

2

(�vl2)(�v)x̂ = µ

0

2

��v2l2x̂.
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(b)

��

Charge density in the front side: �
0

(� = ��
0

);
Charge density on the back side: �̄ = �̄�

0

, where v̄ = 2v

1+v

2

/c

2

,

so �̄ =
1q

1� 4v

2

/c

2

(1+v

2

/c

2

)

2

=
(1 + v2/c2)q

1 + 2 v

2

c

2

+ v

4

c

4

� 4 v

2

c

2

=
1 + v2/c2q
1� 2 v

2

c

2

+ v

4

c

4

=
(1 + v2/c2)
(1� v2/c2)

= �2

⇣
1 +

v2

c2

⌘
Length of front and back sides in this frame: l/�. So net charge on back side is:

q
+

= �̄
l

�
= �2

⇣
1 +

v2

c2

⌘�
�

l

�
=
⇣
1 +

v2

c2

⌘
�l

Net charge on front side is:

q� = �
0

l

�
=
�

�

l

�
=

1
�2

�l

So dipole moment (note: charges on sides are equal):

p = (q
+

)
l

2
ŷ � (q�)

l

2
ŷ =

⇣
1 +

v2

c2

⌘
�l

l

2
� 1
�2

�l
l

2

�
ŷ =

�l2

2

⇣
1 +

v2

c2

� 1 +
v2

c2

⌘
ŷ =

�l2v2

c2

ŷ.

E = �

0

2✏

0

ẑ, where � = ��
0

, so N = p⇥E =
�l2v2

c2

�

2✏
0

�
(ŷ⇥ẑ) =

1
�

µ
0

2
��l2v2x̂.

So apart from the relativistic factor of � the torque is the same in both systems — but in S it is the torque
exerted by a magnetic field on a magnetic dipole, whereas in S̄ it is the torque exerted by an electric field on
an electric dipole.
Problem 12.66

Choose axes so that E points in the z direction and B in the yz plane: E = (0, 0, E); B = (0, B cos�, B sin�).
Go to a frame moving at speed v in the x direction:

Ē =
�
0,��vB sin�, �(E + vB cos�)

�
; B̄
�
0, �(B cos�+

v

c2

E), �B sin�
�
.

(I used Eq. 12.109.) Parallel provided
��vB sin�

�(B cos�+ v

c

2

E)
=
�(E + vB cos�)

�B sin�
, or

�vB2 sin2 � =
�
B cos�+

v

c2

E
�
(E + vB cos�) = EB cos�+ vB2 cos2 �+

v

c2

E2 +
v2

c2

EB cos�

0 = vB2 +
v

c2

E2 + EB cos�
⇣
1 +

v2

c2

⌘
;

v

1 + v2/c2

= � EB cos�
B2 + E2/c2

Now E⇥B =

������
x̂ ŷ ẑ
0 0 E
0 B cos� B sin�

������ = �EB cos�. So
v

1 + v2/c2

=
E⇥B

B2 + E2/c2

. qed

No, there can be no frame in which E ? B, for (E·B) is invariant, and since it is not zero in S it can’t be
zero in S̄.
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Problem 12.67

6

✕v☛v

✛✛
v̄

✲ x−q
✲

❄

✻

✎❲

✗ ❖

☛❯

✕ ❑

+q
✛

✻

❄

✗❖

✎ ❲

✕❑

☛ ❯

✻

❄

✗❖

✎ ❲

✍
▼

✌
◆

◆ ❲ ❄✎✌

✍ ✗ ✻❖▼

✲ x
+ −

✶ct
!
E

!
E
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Just before:
Field lines emanate
from present position
of particle.

6

✕v☛v

✛✛
v̄

✲ x−q
✲

❄

✻

✎❲

✗ ❖

☛❯

✕ ❑

+q
✛

✻

❄

✗❖

✎ ❲

✕❑

☛ ❯

✻

❄

✗❖

✎ ❲

✍
▼

✌
◆

◆ ❲ ❄✎✌

✍ ✗ ✻❖▼

✲ x
+ −

✶ct
!
E

!
E
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Just after : Field lines outside sphere of radius ct emanate from
position particle would have reached, had it kept going on its
original “flight plan”. Inside the sphere E = 0. On the sur-
face the lines connect up (since they cannot simply terminate
in empty space), as suggested in the figure.

This produces a dense cluster of tangentially-directed field
lines, which expand with the spherical shell. This is a pic-
torial way of understanding the generation of electromagnetic
radiation.

Problem 12.68
Equation 12.67 assumes the particle is (instantaneously) at rest in S. Here the particle is at rest in S̄. So

F? = 1

�

F̄?, Fk = F̄k. Using F̄ = qĒ, then,

F
x

= F̄
x

= qĒ
x

, F
y

=
1
�

F̄
y

=
1
�

qĒ
y

, F
z

=
1
�

F̄
z

=
1
�

qĒ
z

.

Invoking Eq. 12.109:

F
x

= qE
x

, F
y

=
1
�

q�(E
y

� vB
z

) = q(E
y

� vB
z

) F
z

=
1
�

q�(E
z

+ vB
y

) = q(E
z

+ vB
y

).

But v ⇥B = �vB
z

x̂ + vB
y

ẑ, so F = q(E + v ⇥B). qed
Problem 12.69

1

✲ y

✻
z

✰
x

✻E

✰B

✲ ȳ

✻
z̄

✰
x̄

=⇒v

✲ ȳ

✻
z̄

✰
x̄

✶R

q

ωt

✒
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Rewrite Eq. 12.109 with x! y, y ! z, z ! x:

Ē
y

= E
y

Ē
z

= �(E
z

� vB
x

) Ē
x

= �(E
x

+ vB
z

)

B̄
y

= B
y

B̄
z

= �
⇣
B

z

+
v

c2

E
x

⌘
B̄

x

= �
⇣
B

x

� v

c2

E
z

⌘
This gives the fields in system S̄ moving in the y direction at speed v.

Now E = (0, 0, E
0

); B = (B
0

, 0, 0), so Ē
y

= 0, Ē
z

= �(E
0

� vB
0

), Ē
x

= 0.
If we want Ē = 0, we must pick v so that E

0

� vB
0

= 0; i.e. v = E
0

/B
0

(The condition E
0

/B
0

< c guarantees that there is no problem getting to such a system.)
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With this, B̄
y

= 0, B̄
z

= 0, B̄
x

= �(B
0

� v

c

2

E
0

) = �B
0

�
1� v

2

c

2

�
= �B

0

1

�

2

= 1

�

B
0

; B̄ =
1
�

B
0

x̂.

The trajectory in S̄: Since the particle started out at rest at the origin
in S, it started out with velocity �vŷ in S̄. According to Eq. 12.71
it will move in a circle of radius R, given by

p = qBR, or �mv = q
⇣ 1
�

B
0

⌘
R) R =

m�2v

qB
0

.

1

✲ y

✻
z

✰
x

✻E

✰B

✲ ȳ

✻
z̄

✰
x̄

=⇒v

✲ ȳ

✻
z̄

✰
x̄

✶R

q

ωt

✒
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The actual trajectory is given by x̄ = 0 ; ȳ = �R sin!t̄ ; z̄ = R(1� cos!t̄); where ! =
v

R
.

The trajectory in S: The Lorentz transformations Eqs. 12.18 and 12.19, for the case of relative motion in
the y-direction, read:

x̄ = x x = x̄

ȳ = �(y � vt) y = �(ȳ + vt̄)
z̄ = z z = z̄

t̄ = �
⇣
t� v

c2

y
⌘

t = �
⇣
t̄ +

v

c2

ȳ
⌘

So the trajectory in S is given by:

x = 0; y = �(�R sin!t̄ + vt̄) = �

⇢
�R sin

h
!�
⇣
t� v

c2

y
⌘i

+ v�
⇣
t� v

c2

y
⌘�

, or

y
⇣
1 + �2

v2

c2

⌘
| {z }

�

2

y(1� v

2

c

2

+

v

2

c

2

)=�

2

y

= �2vt� �R sin
h
!�
⇣
t� v

c2

y
⌘i)

(y � vt)� = �R sin
h
!�
⇣
t� v

c

2

y
⌘i

;

z = R(1� cos2 !t̄) = R
h
1� cos!�

⇣
t� v

c2

y
⌘i

.

So: x = 0; y = vt� R

�
sin
h
!�
⇣
t� v

c2

y
⌘i

; z = R�R cos
h
!�
⇣
t� v

c2

⌘i
.

We can get rid of the trigonometric terms by the usual trick:

�(y � vt) = �R sin
⇥
!�(t� v

c

2

y)
⇤

z �R = �R cos
⇥
!�(t� v

c

2

y)
⇤ �

) �2(y � vt)2 + (z �R)2 = R2.

Absent the �2, this would be the cycloid we found back in Ch. 5 (Eq. 5.9). The �2 makes it, as it were, an
elliptical cycloid — same picture as Fig. 5.7, but with the horizontal axis stretched out.
Problem 12.70
(a) D = ✏

0

E + P suggests E! 1

✏

0

D
H = 1

µ

0

B�M suggests B! µ
0

H

�
but it’s a little cleaner if we divide by µ

0

while we’re at it, so that

E! 1

µ

0

✏

0

D = c2D, B! H. Then:
Dµ⌫ =

8>><>>:
0 cD

x

cD
y

cD
z

�cD
x

0 H
z

�H
y

�cD
y

�H
z

0 H
x

�cD
z

H
y

�H
x

0

9>>=>>;
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Then (following the derivation in Sect. 12.3.4):

@

@x⌫

D0⌫ = cr·D = c⇢
f

= J0

f

;
@

@x⌫

D1⌫ =
1
c

@

@t
(�cD

x

) + (r⇥H)
x

= (J
f

)
x

; so
@D

µ⌫

@x⌫

= Jµ

f

,

where Jµ

f

= (c⇢
f

,J
f

). Meanwhile, the homogeneous Maxwell equations
�
r·B = 0, E = �@B

@t

�
are unchanged,

and hence
@Gµ⌫

@x⌫

= 0.

(b)
Hµ⌫ =

8>><>>:
0 H

x

H
y

H
z

�H
x

0 �cD
z

cD
y

�H
y

cD
z

0 �cD
x

�H
z

�cD
y

cD
x

0

9>>=>>;
(c) If the material is at rest, ⌘

⌫

= (�c, 0, 0, 0), and the sum over ⌫ collapses to a single term:

Dµ0⌘
0

= c2✏Fµ0⌘
0

) Dµ0 = c2✏Fµ0 ) �cD = �c2✏
E
c
) D = ✏E (Eq. 4.32), X

Hµ0⌘
0

=
1
µ

Gµ0⌘
0

) Hµ0 =
1
µ

Gµ0 ) �H = � 1
µ
B) H =

1
µ
B (Eq. 6.31). X

(d) In general, ⌘
⌫

= �(�c,u), so, for µ = 0:

D0⌫⌘
⌫

= D01⌘
1

+ D02⌘
2

+ D03⌘
3

= cD
x

(�u
x

) + cD
y

(�u
y

) + cD
z

(�u
z

) = �c(D · u),

F 0⌫⌘
⌫

= F 01⌘
1

+ F 02⌘
2

+ F 03⌘
3

=
E

x

c
(�u

x

) +
E

y

c
(�u

y

) +
E

z

c
(�u

z

) =
�

c
(E · u), so

D0⌫⌘
⌫

= c2✏F 0⌫⌘
⌫

) �c(D · u) = c2✏
⇣�

c

⌘
(E · u)) D · u = ✏(E · u). [1]

H0⌫⌘
⌫

= H01⌘
1

+ H02⌘
2

+ H03⌘
3

= H
x

(�u
x

) + H
y

(�u
y

) + H
z

(�u
z

) = �(H · u),

G0⌫⌘
⌫

= G01⌘
1

+ G02⌘
2

+ G03⌘
3

= B
x

(�u
x

) + B
y

(�u
y

) + B
z

(�u
z

) = �(B · u), so

H0⌫⌘
⌫

=
1
µ

G0⌫⌘
⌫

) �(H · u) =
1
µ
�(B · u)) H · u =

1
µ

(B · u). [2]

Similarly, for µ = 1:

D1⌫⌘
⌫

= D10⌘
0

+ D12⌘
2

+ D13⌘
3

= (�cD
x

)(��c) + H
z

(�u
y

) + (�H
y

)(�u
z

) = �(c2D
x

+ u
y

H
z

� u
z

H
y

)
= �

⇥
c2D + (u⇥H)

⇤
x

,

F 1⌫⌘
⌫

= F 10⌘
0

+ F 12⌘
2

+ F 13⌘
3

=
�E

x

c
(��c) + B

z

(�u
y

) + (�B
y

)(�u
z

) = �(E
x

+ u
y

B
z

� u
z

B
y

)

= � [E + (u⇥B)]
x

, so D1⌫⌘
⌫

= c2✏F 1⌫⌘
⌫

)

�
⇥
c2D + (u⇥H)

⇤
x

= c2✏� [E + (u⇥B)]
x

) D +
1
c2

(u⇥H) = ✏ [E + (u⇥B)] . [3]

H1⌫⌘
⌫

= H10⌘
0

+ H12⌘
2

+ H13⌘
3

= (�H
x

)(��c) + (�cD
z

)(�u
y

) + (cD
y

)(�u
z

)
= �c(H

x

� u
y

D
z

+ u
z

D
y

) = �c [H� (u⇥D)]
x

,
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G1⌫⌘
⌫

= G10⌘
0

+ G12⌘
2

+ G13⌘
3

= (�B
x

)(��c) +
✓
�E

z

c

◆
(�u

y

) +
✓

E
y

c

◆
(�u

z

)

=
�

c
(c2B

x

� u
y

E
z

+ u
z

E
y

) =
�

c

⇥
c2B� (u⇥E)

⇤
x

, so H1⌫⌘
⌫

=
1
µ

G1⌫⌘
⌫

)

�c [H� (u⇥D)]
x

=
1
µ

�

c

⇥
c2B� (u⇥E)

⇤
x

) H� (u⇥D) =
1
µ


B� 1

c2

(u⇥E)
�

. [4]

Use Eq. [4] as an expression for H, plug this into Eq. [3], and solve for D:

D +
1
c2

u⇥
⇢

(u⇥D) +
1
µ


B� 1

c2

(u⇥E)
��

= ✏ [E + (u⇥B)] ;

D +
1
c2

⇥
(u ·D)u� u2D

⇤
= ✏ [E + (u⇥B)]� 1

µc2

(u⇥B) +
1

µc4

[u⇥ (u⇥E)] .

Using Eq. [1] to rewrite (u ·D):

D
✓

1� u2

c2

◆
= � ✏

c2

(E · u)u + ✏[E + (u⇥B)]� 1
µc2

(u⇥B) +
1

µc4

⇥
(E · u)u� u2E

⇤
= ✏

⇢
1� u2

✏µc4

�
E� 1

c2


1� 1

✏µc2

�
(E · u)u + (u⇥B)


1� 1

✏µc2

��
.

Let � ⌘ 1p
1� u2/c2

, v ⌘ 1
p
✏µ

. Then

D = �2✏

⇢✓
1� u2v2

c4

◆
E +

✓
1� v2

c2

◆
(u⇥B)� 1

c2

(E · u)u
��

.

Now use Eq. [3] as an expression for D, plug this into Eq. [4], and solve for H:

H� u⇥
⇢
� 1

c2

(u⇥H) + ✏[E + (u⇥B)]
�

=
1
µ


B� 1

c2

(u⇥E)
�

;

H +
1
c2

⇥
(u ·H)u� u2H

⇤
=

1
µ


B� 1

c2

(u⇥E)
�

+ ✏(u⇥E) + ✏[u⇥ (u⇥B)].

Using Eq. [2] to rewrite (u ·H):

H
✓

1� u2

c2

◆
= � 1

µc2

(B · u)u +
1
µ


B� 1

c2

(u⇥E)
�

+ ✏(u⇥E) + ✏
⇥
(B · u)u� u2B

⇤
=

1
µ

⇢⇥
1� µ✏u2

⇤
B +


✏µ� 1

c2

�
[(u⇥E) + (B · u)u]

�
.

H =
�2

µ

⇢✓
1� u2

v2

◆
B +

✓
1
v2

� 1
c2

◆
[(u⇥E) + (B · u)u]

�
.
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Problem 12.71
We know that (proper) power transforms as the zeroth component of a 4-vector K0 = 1

c

dW

d⌧

. The Larmor
formula says that for v = 0, dW

d⌧

= 1

4⇡✏

0

2

3

q

2

c

3

a2 (Eq. 11.70). Can we think of a 4-vector whose zeroth component
reduces to this when the velocity is zero?

Well, a2 smells like (↵⌫↵
⌫

), but how do we get a 4-vector in here? How about ⌘µ, whose zeroth component
is just c, when v = 0? Try, then:

Kµ =
1

4⇡✏
0

2
3

q2

c5

(↵⌫↵
⌫

)⌘
µ

This has the right transformation properties, but we must check that it does reduce to the Larmor formula
when v = 0:

dW

dt
=

1
�

dW

d⌧
=

1
�

cK0 =
1
�

c
µ

0

q2

6⇡c3

(↵⌫↵
⌫

)⌘0, but ⌘0 = c�, so
dW

dt
=

µ
0

q2

6⇡c
(↵⌫↵

⌫

) . [Incidentally, this tells

us that the power itself (as opposed to proper power) is a scalar. If this had been obvious from the start, we
could simply have looked for a Lorentz scalar that generalizes the Larmor formula.]

In Prob. 12.39(b) we calculated (↵⌫↵
⌫

) in terms of ordinary velocity and acceleration:

↵⌫↵
⌫

= �4

h
a2 +

(v·a)2

(c2 � v2)

i
= �6

h
a2��2 +

1
c2

(v·a)2
i

= �6

h
a2

⇣
1� v2

c2

⌘
+

1
c2

(v·a)2
i

= �6

n
a2 � 1

c2

⇥
v2a2 � (v·a)2

⇤o
.

Now v·a = va cos ✓, where ✓ is the angle between v and a, so:

v2a2 � (v·a)2 = v2a2(1� cos2 ✓) = v2a2 sin2 ✓ = |v⇥a|2.

↵⌫↵
⌫

= �6

⇣
a2 �

���v⇥a
c

���2⌘.
dW

dt
=

µ
0

q2

6⇡c
�6

⇣
a2 �

���v⇥a
c

���2⌘, which is Liénard’s formula (Eq. 11.73).

Problem 12.72

(a) It’s inconsistent with the constraint ⌘
µ

Kµ = 0 (Prob. 12.39(d)).

(b) We want to find a 4-vector bµ with the property that
�

d↵

µ

d⌧

+bµ

�
⌘

µ

= 0. How about bµ = 
�

d↵

⌫

d⌧

⌘
⌫

�
⌘µ? Then�

d↵

⌫

d⌧

+bµ

�
⌘

µ

= d↵

µ

d⌧

⌘
µ

+d↵

⌫

d⌧

⌘
⌫

(⌘µ⌘
µ

). But ⌘µ⌘
µ

= �c2, so this becomes
�

d↵

µ

d⌧

⌘
µ

�
�c2

�
d↵

⌫

d⌧

⌘
⌫

�
, which is zero,

if we pick  = 1/c2. This suggests Kµ

rad

=
µ

0

q2

6⇡c

⇣d↵µ

d⌧
+

1
c2

d↵⌫

d⌧
⌘

⌫

⌘µ

⌘
. Note that ⌘µ = (c,v)�, so the spatial

components of bµ vanish in the nonrelativistic limit v ⌧ c, and hence this still reduces to the Abraham-Lorentz
formula. [Incidentally, ↵⌫⌘

⌫

= 0) d

d⌧

(↵⌫⌘
⌫

) = 0) d↵

⌫

d⌧

⌘
⌫

+↵⌫

d⌘

⌫

d⌧

= 0, so d↵

⌫

d⌧

⌘
⌫

= �↵⌫↵
⌫

, and hence bµ can
just as well be written � 1

c

2

(↵⌫↵
⌫

)⌘µ.]

Problem 12.73
Define the electric current 4-vector as before: Jµ

e

= (c⇢
e

,J
e

), and the magnetic current analogously:
Jµ

m

= (c⇢
m

,J
m

). The fundamental laws are then

@
⌫

Fµ⌫ = µ
0

Jµ

e

, @
⌫

Gµ⌫ =
µ

0

c
Jµ

m

, Kµ =
⇣
q
e

Fµ⌫ +
q
m

c
Gµ⌫

⌘
⌘

⌫

.
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The first of these reproduces r·E = (1/✏
0

)⇢
e

and r⇥B = µ
0

J
e

+ µ
0

✏
0

@E/@t, just as before; the second
yields r·B = (µ

0

/c)(c⇢
m

) = µ
0

⇢
m

and �(1/c)[@B/@t + r⇥E] = (µ
0

/c)J
m

, or r⇥E = �µ
0

J
m

� @B/@t
(generalizing Sec. 12.3.4). These are Maxwell’s equations with magnetic charge (Eq. 7.44). The third says

K1 =
q
ep

1� u2/c2

[E + (u⇥B)]
x

+
q
m

c

"
�cp

1� u2/c2

(�B
x

) +
u

yp
1� u2/c2

✓
�E

z

c

◆
+

u
zp

1� u2/c2

✓
E

y

c

◆#
,

K =
1p

1� u2/c2

⇢
q
e

[E + (u⇥B)] + q
m


B� 1

c2

(u⇥E)
��

, or

F = q
e

[E + (u⇥B] + q
m


B� 1

c2

(u⇥E)
�

,

which is the generalized Lorentz force law (Eq. 7.69).
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